
An Isotropic Shift-Pointwise Network for
Crossbar-Efficient Neural Network Design

Ziyi Guan1∗
, Boyu Li1

∗
, Yuan Ren1, Muqun Niu1, Hantao Huang2, Graziano Chesi1, Hao Yu2, and Ngai Wong1

1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
2School of Microelectronics, Southern University of Science and Technology, Shenzhen

Abstract—Resistive random-access memory (RRAM), with its
programmable and nonvolatile conductance, permits compute-
in-memory (CIM) at a much higher energy efficiency than the
traditional von Neumann architecture, making it a promising
candidate for edge AI. Nonetheless, the fixed-size crossbar tiles
on RRAM are inherently unfit for conventional pyramid-shape
convolutional neural networks (CNNs) that incur low crossbar
utilization. To this end, we recognize the mixed-signal (digital-
analog) nature in RRAM circuits and customize an isotropic shift-
pointwise network that exploits digital shift operations for efficient
spatial mixing and analog pointwise operations for channel mixing.
To fast ablate various shift-pointwise topologies, a new recon-
figurable energy-efficient shift module is designed and packaged
into a seamless mixed-domain simulator. The optimized design
achieves a near-100% crossbar utilization, providing a state-of-
the-art INT8 accuracy of 94.88% (76.55%) on the CIFAR-10
(CIFAR-100) dataset with 1.6M parameters, which sets a new
standard for RRAM-based AI accelerators.

Index Terms—Shift operation, crossbar utilization, RRAM,
algorithm-hardware co-design, isotropic architecture

I. INTRODUCTION

Convolutional neural networks (CNNs) have exhibited ex-
ceptional performance in various computer vision tasks and
applications [1], [2]. Nevertheless, their escalating size and
complexity pose grand computational challenges, especially
for edge devices. To this end, compute-in-memory (CIM) has
emerged as a promising solution, with resistive random-access
memory (RRAM) [3] being a leading contender due to its high
density, reduced power, and compatibility with monolithic 3D
integration. However, an often overlooked issue is the mismatch
between standard CNNs and the RRAM infrastructure. Classi-
cal networks like ResNet [1] and DenseNet [2] feature the de
facto pyramidal CNN configurations, leading to sub-optimal
crossbar utilization and performance when realized on RRAM
with fixed crossbar array sizes. From Fig. 1, when constrained
to a parameter count below 2.5M for edge AI realization, most
pyramidal CNNs demonstrate a crossbar utilization below 70%
at 64×64 crossbar sizes. Such sub-optimal utilization consider-
ably impacts the hardware performance of RRAM-based neural
networks, leading to significant latency and diminished energy
efficiency.

On the other hand, isotropic architectures like ConvMixer [4]
and MLP-Mixer [5] have equal sizes and shapes for all elements
throughout the network, showing better accuracy compared
to pyramid CNN. However, these isotropic architectures suf-
fer from a huge number of parameters and FLOPS, which

∗Equal contribution.

0.0 0.5 1.0 1.5 2.0 2.5
Parameter (M)

60

70

80

90

100

Cr
os

sb
ar

 U
ti

liz
at

io
n 

(%
)

VGG_Small

ResNet20

ResNet32

ResNet56 ResNet110

ResNet18

DenseNet

VGG

Ours (PSP_128_16) 

Ours (PSP_128_12) Ours (PSP_256_12) 
Ours (PSP_256_16)

Ours on 32x32 crossbar
Ours on 64x64 crossbar
ResNet on 32x32 crossbar
ResNet on 64x64 crossbar
DenseNet on 32x32 crossbar
DenseNet on 64x64 crossbar
VGG on 32x32 crossbar
VGG on 64x64 crossbarResNet56 ResNet110

Fig. 1: Comparison of crossbar utilization between the proposed
isotropic networks and some mainstream CNNs.
pose challenges to deploying on resource-limited CIM devices.
Meanwhile, a parameter-free shift operation [6] is proposed
to replace spatial convolution without introducing parameters.
Nonetheless, this operation can not be supported on RRAM
crossbar, leading to low crossbar utilization.

To fully harness the benefits of analog RRAM crossbars
embedded in a digital system with peripheral ADCs and
DACs, we first introduce the isotropic shift-pointwise network,
namely Pointwise-Shift-Pointwise (PSP) and Shift-Pointwise
(SP), which contrasts them with mainstream CNNs on typical
crossbar sizes of 32×32 and 64×64 (cf. Fig. 1), maintaining a
near-100% crossbar utilization at a reduced parameter count.

We first develop a mixed-domain simulator to accurately
estimate the hardware and software performances of the pro-
posed networks. This is achieved through the adoption of an
algorithm-hardware co-design approach, which integrates the
shift operation in the digital domain with dense pointwise
convolutions in the analog domain. Depicted in Fig. 2, except
for the patch embedding and final classifier, viz. the stem and
head, PSP and SP maintain an isotropic architecture in their
backbone which is the key to high RRAM crossbar utilization.
The main contributions of this paper are:

• We are among the first to design a lightweight isotropic
shift-pointwise network with near-100% RRAM crossbar
utilization. The proposed PSP and SP networks outperform
standard CNNs in model accuracy and hardware metrics.

• A novel reconfigurable and energy-efficient shift module
is developed, enabling accurate characterization of the
hardware metrics affiliated with the shift operation.



• We utilize an algorithm-hardware co-design to exploit
shift operation in digital domain for spatial mixing and
pointwise operation in analog domain for channel mixing.

II. RELATED WORK

A. Resistive Random-Access Memory

An RRAM macro consists of the RRAM crossbar and its
peripheral ADC/DAC circuit blocks, forming a critical compo-
nent of a CIM accelerator. Previous research has investigated
crossbar-based CNN accelerators. Ref. [7] mentioned hardware
costs but did not offer a comprehensive analysis of various
metrics or an exhaustive hardware-aware evaluation. Ref. [8]
explored the quantization of CNNs on RRAM crossbars.
Nonetheless, they neither considered crossbar utilization nor
ways to improve it. In fact, all these prior studies primarily
focused on simulating and implementing standard CNNs on
RRAM via pruning and/or quantization, without the RRAM
utilization-oriented viewpoints emphasized in our work.

B. Shift Operation and Isotropic Architectures

The shift layer was initially proposed in [6] which employs a
“zero-flop” shift operation to facilitate the exchange of spatial
information between feature maps. Such shift-based networks
have then been expanded in subsequent studies to variants
like group shift [6], and active shift [9], etc. In the present
study, a novel partial shift operation is employed in an isotropic
structure when realized on the RRAM crossbar. Compared to
previous work, the proposed shift block achieves higher model
accuracy with less energy consumption and latency.

As mentioned in Section I, various frameworks have adopted
isotropic architectures, such as MLP-Mixer [5] and Con-
vMixer [4]. These frameworks have demonstrated exceptional
performance on large datasets. However, implementing these
networks on RRAM is often prohibitive due to their substantial
number of parameters. In this work, we propose novel PSP
and SP frameworks as depicted in Fig. 2. Such shift plus
pointwise combo amalgamates the simplicity and structure of
the ConvMixer and MLP-Mixer, while circumventing the re-
dundancy of the expensive kernel matrix. Specifically designed
for RRAM arrays, our framework constitutes the first isotropic
architecture that employs a digital spatial mixer and an analog
channel mixer to attain high chip utilization and outstanding
performance on an RRAM embedded system.

III. DESIGN OF THE ISOTROPIC SHIFT-POINTWISE
NETWORK

Inspired by ConvMixer [4] and MLP-Mixer [5], the isotropic
architecture with a simple patch embedding stem is itself a
powerful template for deep learning. Therefore, we follow the
isotropic paradigm and improve the architecture performance
with consideration of RRAM platform.

To investigate the impact of skip connection placement on
overall hardware performance, we proposed two structures,
PSP and SP. In the PSP architecture, a skip connection is
placed between the first pointwise convolution layer and shift
block, while in SP architecture, only a single skip connection
is retained within the shift block, enabling the latter to be done

purely digitally without extra hardware. In the SP network, the
architecture is to emulate the token-mixer and channel-mixer
structures in the MLP-Mixer. In contrast to MLP-Mixer, we
employ a shift layer to replace the MLP, which largely reduces
the number of parameters.

In the PSP network, we substitute the large kernel depthwise
convolutions in ConvMixer with shift blocks and pointwise
convolutions in the RRAM crossbar to maintain high crossbar
utilization. The motivation for removing depthwise convolu-
tions arises from their incompatibility with crossbars: given a
kernel of size 3×3, during depthwise convolution, the im2col
transform results in a block-diagonal mapping on crossbar cells,
while wasting the off-diagonal storage which is enabled during
crossbar column-wise read operations. Therefore, depthwise
convolutions are practically incompatible for RRAM crossbars.
The substitution results in a decrease in parameters while retain-
ing comparable performance and, most importantly, achieving
high crossbar utilization.

Illustrated in Fig. 2, the whole architecture is isotropic archi-
tecture and consists of four sequentially stacked components:
pointwise convolution, GELU, batch normalization, and shift
block. The blue dashed box represents the depth layers that are
repeatedly stacked. Algorithm 1 depicts the shift block. This
process involves taking an input tensor and shifting a subset of
its channels by one pixel in nine spatial directions (left, right,
up, down, left up, right up, left down, and right down and
zero shift). During the shifting process, pixels outside the input
tensors’ bounds are discarded, and empty pixels are padded
with zeros. As illustrated in Fig. 3(c), our approach is distinct
from both the grouped shift in Fig. 3(a) and the active shift
in Fig. 3(b). In particular, our shift block is tailored such that
the initial 1/3 of channels undergo vertical and horizontal shifts
(left, right, up, and down), the central 1/3 of channels exercise
diagonal shifts (left up, right up,left down, and right down),
and the final 1/3 remain unchanged. To improve the ability
to mix spatial features and increase accuracy, the proposed
shift block combines vertical and diagonal movements for a
more comprehensive extraction of information in the spatial
dimension. To reduce energy consumption associated with
address and data change flow in digital circuits, a partial shift
scheme is leveraged, affecting only 2/3 of the channels.

The remaining components are patch embedding, average
pooling, and fully connected layers. Given an input image shape
of W ×H×3, after the first patch embedding layers with 2×2
patch size, the image is split into halved width and height, viz.
W
2 × H

2 × 3. The subsequent components follow the isotropic
paradigm to remain equal in size and shape throughout the
network, achieving the key of a near-100% RRAM crossbar
utilization. The pointwise convolution which executes the basic
matrix multiplication is regarded as a channel mixer and can
be implemented on the analog RRAM crossbar. The shift block
which exchanges spatial information across various channels,
is regarded as a spatial mixer and can be implemented on the
digital circuits. The specific design of the shift module and
mapping will be discussed in Section IV.



3x3 Convolution + BN + GELU

1x1 Convolution + BN + GELU

Shift Block

Average Polling

Fully Connected

W

depth

W

depth P
a

tc
h

E
m

b
e

d
d

in
g

S
h

if
t 

  
 

B
lo

c
k

G
E

L
U

B
a

tc
h

 N
o

rm

A
v
e

ra
g

e

P
o

o
li
n

g

1
x

1
 

C
o

n
v
o

lu
ti

o
n

G
E

L
U

B
a

tc
h

 N
o

rm

F
u

ll
y
 

C
o

n
n

e
c

te
d

Skip Connection

SP architecture: Shift-Pointwise

P
a
tc

h

E
m

b
e
d

d
in

g

1
x

1
 

C
o

n
v
o

lu
ti

o
n

G
E

L
U

B
a
tc

h
 N

o
rm

S
h

if
t 

  
 

B
lo

c
k

G
E

L
U

B
a
tc

h
 N

o
rm

A
v
e
ra

g
e

P
o

o
li
n

g

1
x

1
 

C
o

n
v
o

lu
ti

o
n

G
E

L
U

B
a
tc

h
 N

o
rm

F
u

ll
y
 

C
o

n
n

e
c
te

d

Skip Connection

PSP architecture: Pointwise-Shift-Pointwise

Fig. 2: Isotropic Shift-Pointwise Network Architecture: (Upper) Pointwise-shift-pointwise (PSP) and (Lower) Shift-pointwise
(SP). Except for the stem and head, the number of channels in all layers remains unchanged to form an isotropic architecture.

.

(a) Group Shift (b) Active Shift 

(c) The proposed Partial Shift 

Shift Block
Shift Block

UpLeft Right Down

Left_Up Right_Up Left_Down Right_Down

Remain Unchanged

Shift Block

Fig. 3: Comparison of existing shift operations (a)&(b) and the
proposed (c) which comprises 8 directions. 2/3 of all channels
are shifted in 8 directions, limiting data movement energy
consumption while up-keeping output accuracy.

Algorithm 1 Pytorch-based Pseudo code for Shift Block
Input: Input feature tensor x, with a shape of [Batch, Channel, Height,
Width], γ a divider to divide the input feature map into nine parts.
Output: The feature map information after the shift block.
1: def shift(x, g = 1/12):
2: out = torch.zeros like(x);
3: # initial 1/3 of channels with vertical and horizontal shifts
4: out[:, g ∗ 0 : g ∗ 1, :, : −1] = x[:, g ∗ 0 : g ∗ 1, :, 1 :]
5: out[:, g ∗ 1 : g ∗ 2, :, 1 :] = x[:, g ∗ 1 : g ∗ 2, :, : −1]
6: out[:, g ∗ 2 : g ∗ 3, : −1, :] = x[:, g ∗ 2 : g ∗ 3, 1 :, :]
7: out[:, g ∗ 3 : g ∗ 4, 1 :, :] = x[:, g ∗ 3 : g ∗ 4, : −1, :]
8: # central 1/3 of channels with diagonal shifts
9: out[:, g ∗ 4 : g ∗ 5, : −1, : −1] = x[:, g ∗ 4 : g ∗ 5, 1 :, 1 :]

10: out[:, g ∗ 5 : g ∗ 6, :, 1 :] = x[:, g ∗ 5 : g ∗ 6, :, : −1]
11: out[:, g ∗ 6 : g ∗ 7, 1 :, : −1] = x[:, g ∗ 6 : g ∗ 7, : −1, 1 :]
12: out[:, g ∗ 7 : g ∗ 8, 1 :, 1 :] = x[:, g ∗ 7 : g ∗ 8, : −1, : −1]
13: # final 1/3 of channels with zero shifts
14: out[:, g ∗ 8 :, :, :] = x[:, g ∗ 8 :, :, :]
15: return out

IV. DESIGN OF THE HARDWARE SHIFT MODULE
A. Architecture of Proposed Shift Module

Previous research [10] has implemented shift operations
for feature maps by utilizing linebuffers which, however, is
not specifically tailored for such purpose. Consequently, us-
ing linebuffer leads to substantial consumption of hardware

resources and induces considerable delays. This in turn signif-
icantly undermines the energy efficiency of the whole-system
design. To address this shortcoming, we present a novel shift
module based on address pointer alterations. Different from
the linebuffer structure, our proposed shift module achieves 8-
way shifting using only an address control module plus a few
registers. This module employs a parametric design, allowing
its circuits to be custom-instantiated to support shift operations
according to the required feature map sizes. Such design can
readily be encapsulated as an Intellectual Property (IP) and
embedded into other neural network accelerators requiring shift
operations.

Referring to Fig. 4(a), the 8 direction shifts can be catego-
rized into two groups: one comprising right, down, left, and
up shifts, which require movement in a single direction; and
another including right down, right up, left down, and left up
shifts, which necessitates movement in two directions. Fig. 4(b)
depicts the address change and output data rewritten to memory
during different modes in the shift module. We consider a 4×4
feature map as an example. The 3D feature map is transformed
into a 1D data array, following the order of width, height,
and channel, and subsequently stored in the DRAM. The row
and column addresses are used to control the DRAM address.
During the shift operation, we leverage the unique capability of
the Read First DRAM, which allows for simultaneous read and
write operations within the same cycle, effectively halving the
time required for the shift module. When the boundary address
is reached, a value of 0 is written to the DRAM, while at other
times, the data from the previous-cycle address will be written
to the current address.
B. Circuit Implementation

The logic of the shift hardware is shown as follows: The
Initialize function resets the entire system. By default, the shift
module is in the idle state, and it enters the config state once the
shift start signal is enabled. After configuring the first read/write
address in the config state, the module transitions into the data
shift state in the next cycle which processes a channel’s feature
map, sends a shift end signal, and reenters the idle state before
shifting the next channel. This process continues until all shift
blocks are shifted as shown in Fig. 3(c).



(a)  Shift control in eight directions

Right Direction

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Right Direction

0

0

0

0

0

0

0

0

Down Diretion0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 Down Diretion0 0 0

0 0 0 0

0 Right_Down Direction0000

0

0

0

0000

0

0

0

0000

0

0

0

0000

0

0

0

Right_Down Direction0000

0

0

0

0000

0

0

0

Right_Up Direction0000

0000

0

0

0

0

0

0

0000

0000

0

0

0

0

0

0

Right_Up Direction0000

0000

0

0

0

0

0

0

Left_Up Direction

11

0000

0000

0

0

0

0

0

0

0000

0000

0

0

0

0

0

0

Left_Up Direction

1

0000

0000

0

0

0

0

0

0

Left_Down Direction0000

0

0

0

000

0

0

0

0

0000

0

0

0

000

0

0

0

0

Left_Down Direction0000

0

0

0

000

0

0

0

0

Up Direction0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Up Direction0 0 0 0

0 0 0 0

Left Direction

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Left Direction

0

0

0

0

0

0

0

0

Right Direction

0

0

0

0

0

0

0

0

Down Diretion0 0 0

0 0 0 0

0 Right_Down Direction0000

0

0

0

0000

0

0

0

Right_Up Direction0000

0000

0

0

0

0

0

0

Left_Up Direction

1

0000

0000

0

0

0

0

0

0

Left_Down Direction0000

0

0

0

000

0

0

0

0

Up Direction0 0 0 0

0 0 0 0

Left Direction

0

0

0

0

0

0

0

0

(b)  Address change and output data rewritten to memory in shift module

3 2 7 1 6 11 0 5 10 15 4 9 14 8 13 123 2 7 1 6 11 0 5 10 15 4 9 14 8 13 12

15 14 11 13 10 7 12 9 6 3 8 5 2 4 1 015 14 11 13 10 7 12 9 6 3 8 5 2 4 1 0

0 1 4 2 5 8 3 6 9 12 7 10 13 11 14 150 1 4 2 5 8 3 6 9 12 7 10 13 11 14 15

12 13 8 14 9 4 15 10 5 0 11 6 1 7 2 312 13 8 14 9 4 15 10 5 0 11 6 1 7 2 3

3 2 7 1 6 11 0 5 10 15 4 9 14 8 13 12

15 14 11 13 10 7 12 9 6 3 8 5 2 4 1 0

0 1 4 2 5 8 3 6 9 12 7 10 13 11 14 15

12 13 8 14 9 4 15 10 5 0 11 6 1 7 2 3

0 

(0,0)

1 

(0,1)

2 

(0,2)

3 

(0,3)
4 

(1,0)

5 

(1,1)

6 

(1,2)

7 

(1,3)
8 

(2,0)

9 

(2,1)

10 

(2,2)

11 

(2,3)
12 

(3,0)

13 

(3,1)

14 

(3,2)

15 

(3,3)

0 

(0,0)

1 

(0,1)

2 

(0,2)

3 

(0,3)
4 

(1,0)

5 

(1,1)

6 

(1,2)

7 

(1,3)
8 

(2,0)

9 

(2,1)

10 

(2,2)

11 

(2,3)
12 

(3,0)

13 

(3,1)

14 

(3,2)

15 

(3,3)

3 2 7 1 6 11 0 5 10 15 4 9 14 8 13 12

15 14 11 13 10 7 12 9 6 3 8 5 2 4 1 0

0 1 4 2 5 8 3 6 9 12 7 10 13 11 14 15

12 13 8 14 9 4 15 10 5 0 11 6 1 7 2 3

0 

(0,0)

1 

(0,1)

2 

(0,2)

3 

(0,3)
4 

(1,0)

5 

(1,1)

6 

(1,2)

7 

(1,3)
8 

(2,0)

9 

(2,1)

10 

(2,2)

11 

(2,3)
12 

(3,0)

13 

(3,1)

14 

(3,2)

15 

(3,3)

Address and 

output Data change 

4 × 4 Feature map 

address arrangement

Right_Down

Right_Up

Left_Down

Left_Up

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 150 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 015 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

Right

Down

Left

Up

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

Right

Down

Left

Up

Fig. 4: Addressing mechanism and data flow in the proposed shift module: (a) Changes of the address pointer on the feature
map in 8 different shift modes; (b) Address change and output data rewritten to memory in shift module in 1-dimension.

The starting address configured in the config state and the
address change in each cycle during the data shift state vary
for different shift modes. For unidirectional shift operations,
the row and column addresses configured in the config state
for right and down shifts are both 0. In the right mode, the
column address increases by one with each clock cycle change
until it reaches the feature map column number. Then the
column address will reset to 0, and the row address increases
by 1, with the data written to the DRAM also set to 0 in the
next cycle. This operation continues until both the row and
column addresses reach the feature map’s maximum value. In
down mode, the row address increases by 1 in each cycle first,
followed by the column address change. For left and up shifts,
the row and column addresses configured in the config state are
the row and column numbers, with the row or column address
decreased by 1 in each cycle.

For compound shift operations, a straightforward approach
is to combine moving up or down and moving left or right in
directional shifts, but this would double the delay. To address
this issue, we designed the address change logic as shown in
Fig. 4(b). In the config state, the read and write addresses of
the four compound shift configurations are located at the four
corners of the feature map. After entering the data shift state,
both the row and column addresses change simultaneously,
either increasing or decreasing by 1, or one increasing while
the other decreases which enables diagonal data shifting. When
boundary conditions are reached, the data written to DRAM in
the next cycle will be set to 0.
C. Mapping Isotropic Networks on RRAM Crossbar

NeuroSim [11], a state-of-the-art simulator for RRAM-based
CNNs, currently lacks the ability to support shift operations
and estimate the associated hardware overhead. Hence, in-
corporating the shift module and integrating it into a mixed-
domain simulator is crucial for hardware profiling and op-
timization. To optimize the isotropic shift-pointwise network
for the RRAM platform, we employ an algorithm-hardware
co-design that successfully enables the deployment of neural
networks leveraging both analog and digital domain operations.
Initially, the input feature from the Dynamic random access

memory (DRAM) is transferred to the DACs for digital signal
to analog voltage conversion. After conversion, the product of
the voltage and the conductance of each RRAM cell is added
through Kirchhoff’s law to obtain the current. Afterwards, the
current is sampled by the ADCs to obtain the digital signals
and then input to adder and shift register to get the output
feature. Finally, the output feature is restored to DRAM after
being shifted by our proposed shift module. In PSP inference
process, the first pointwise convolution extracts features in the
channel dimension. Meantime, the feature map undergoes shift
operations through the shift module to perform spatial mixing.
After the input feature has been operated in both digital and
analog domain, the output feature then returns to the DRAM
and restarts the next cycle.

V. EXPERIMENTS
A. Experiment Setup

Our experiments are conducted on the CIFAR-10/100 [13],
and ImageNet [14] datasets, utilizing the proposed PSP and
SP network architectures for training and validation on the
PyTorch 1.7.1 platform. Experiments are conducted using one
NVIDIA RTX 3090 card equipped with a 32GB frame buffer.
To accurately assess the system performance, we meticulously
recreated the entire inference process employing a mixed-
domain simulator, which combines both the Neurosim and shift
module. The RRAM crossbar size in Neurosim is configured as
64×64, whose experimental findings and observations general-
ize to other popular crossbar sizes. Meantime, we instantiate a
shift module of 16×16 to match the feature size and implement
it using the SMIC 28nm process library with typical parameters
(1.00V and 25◦C) through the Synopsys Design Compiler. We
set our clock frequency to be inline with that of the Neurosim.
After obtaining the netlist file, we extract the feature maps for
all channels requiring shifting across all blocks of a network
inference image as a testbench. This testbench is input into
Synopsys VCS to generate a waveform diagram, which is then
fed into Primetime to accurately characterize the shift module’s
dynamic power consumption. Furthermore, the shift module
has undergone functional verification and resource consumption
analysis on the Artix-7 AC701 FPGA.



TABLE I: Comparison of PSP and SP networks vs. mainstream CNNs (ResNet, VGG, and DenseNet40) trained on CIFAR-10
and deployed on 64×64 RRAM crossbars.

Model Parameters(M) Top-1 Accuracy(%) Crossbar Utilization(%) Latency(ms) Energy Efficiency(Tops/W) Chip Area(mm2)
ResNet110 [1] 1.73 94.52 57.18 9.82 1.89 23.18
DenseNet (40,12) [2] 0.17 91.04 60.53 11.00 3.32 35.50
VGG8 [12] 12.97 90.58 99.39 5.00 4.83 284.18
ShiftResNet110 [6] 0.20 90.67 57.18 10.04 1.88 23.18
PSP 128 8 0.26 92.97 93.40 2.40 6.90 6.84
PSP 256 8 1.06 94.24 94.29 3.57 7.42 12.52
PSP 256 12 1.59 94.98 96.07 5.33 7.34 17.91
SP 256 24 1.60 95.21 96.07 6.43 4.68 26.80
PSP 256 16 2.12 95.64 97.01 8.13 6.86 23.62

TABLE II: Comparison of various PSP and SP architectures
and ResNet for w.r.t. QAT Top-1 Accuracy for FP32, INT8
and INT4 on CIFAR-10/100 datasets.

Model Parameters(M) FP32(%) INT8(%) INT4(%)
ResNet32 0.47 92.61/71.05 92.76/70.11 92.39/69.78
ResNet110 1.73 94.52/73.44 92.76/71.44 92.39/71.20
PSP 128 12 0.40 93.73/74.22 93.62/72.05 92.76/70.94
PSP 256 12 1.59 94.98/77.94 94.88/76.55 94.50/76.10
PSP 256 16 2.12 95.64/77.86 94.72/76.02 94.59/75.64

B. Algorithm Performance Comparison of Model Accuracy

We train multiple networks based on the PSP and SP
architectures with two varying factors: (1) the width or hidden
dimension h, representing the dimensionality of patch embed-
dings, and (2) the depth d, indicating the number of PSP and
SP layer repetitions. The naming conventions for PSP and SP
bodies are designated as PSP h d and SP h d, respectively,
based on their hidden dimension and depth. For example, in
Table I, PSP 256 16 denotes PSP with a width of 256 and
a depth of 16, achieving the highest accuracy (95.64%) on
CIFAR-10 and the maximum crossbar utilization (97.01%)
within 2.1M parameters.

Then, to implement the lightweight models on RRAM, we
employ quantization-aware training (QAT) [15] to quantize
the model weights and activations. This leads to a significant
reduction in the bit-width of the model weights and activations
without sacrificing much accuracy. The QAT results (includ-
ing FP32, INT8, and INT4) compared with ResNet32 and
ResNet110 on CIFAR10/100 datasets are shown in Table II.
Under similar parameter settings, our model outperforms both
ResNet32 and ResNet110 in FP32, INT8, and INT4 QAT Top-
1 accuracy. Fig. 5 depicts the different QAT configurations of
PSP and SP architectures applied to the CIFAR-10 dataset. The
graph illustrates that the PSP 256 8 network exhibits the least
accuracy degradation after quantization, with a maximum drop
of only 0.3% in accuracy at either INT8 or INT4.

Subsequently, to substantiate the efficacy of the proposed
models on large-scale datasets, we evaluate the performance
of the PSP architectures on ImageNet. Noted that all training
schedules are from scratch without any data augmentation. As
enumerated in Table III, with a relatively low number of param-
eters, PSP 512 16 can achieve a top-1 accuracy of 74.87% and
PSP 256 12 reaches 72.20% within 1.8M parameters, further
validating the versatility of the PSP architecture.

TABLE III: Comparison of various PSP architectures against
mainstream CNNs such as ResNet, MobileNet w.r.t. Top-1
Accuracy on ImageNet dataset.

Model Parameters(M) Top-1 Accuracy(%)
ResNet18 [1] 11.17 69.15
MobileNetV1 [16] 4.2 70.60
PSP 256 12 1.8 72.20
PSP 512 12 6.32 73.18
PSP 512 16 8.43 74.87

PS
P_

12
8_

8

SP
_1

28
_1

6

PS
P_

12
8_

12

SP
_1

28
_2

4

PS
P_

12
8_

16

SP
_1

28
_3

2

PS
P_

25
6_

8

SP
_2

56
_1

6

PS
P_

25
6_

12

SP
_2

56
_2

4

PS
P_

25
6_

16

SP
_2

56
_3

2

Model name

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0
Ac

cu
ra

cy
(%

)

FP32
INT8
INT4

Fig. 5: Comparison between FP32, INT8 and INT4 among
various PSP and SP architectures on CIFAR-10 dataset.

C. System Performance Comparison of Hardware Metrics

The shift module boasts an area of 100.058um2, a critical
path delay of 0.65ns, and a low static power consumption
of only 0.138W. The energy and latency of five different
models in the shift module are comprehensively presented in
Table IV. For the first time, we have systematically determined
the hardware consumption of the shift module within the overall
network flow. Neurosim employs a 22nm technology in its
RRAM-based chip, whereas the shift digital domain utilizes
a 28 nm technology. To ensure a fair comparison of hardware
tests and energy consumption, we use the DeepScaleTool for
accurate estimation of deep-submicron technology scaling [17].
Additionally, the shift module incorporates 102 Look-Up Tables
(LUTs), 23 Flip-Flops (FFs), and 33 IO pins in the FPGA
implementation.

To corroborate the efficacy and robustness of the proposed
PSP and SP networks, we benchmark their performance against
mainstream CNNs such as ResNet, VGG, and DenseNet in



TABLE IV: Comparison of energy consumption and latency of
different models in the shift module.

Model Energy(nJ) Normalized Energy(nJ) Latency(ms)
PSP 128 16 66.800 54.177 0.04301
PSP 256 16 215.000 174.371 0.12902
SP 256 32 284.000 230.333 0.17203

terms of model parameters, Top-1 accuracy, crossbar utiliza-
tion, latency, energy efficiency, and chip area for the CIFAR-
10 dataset, cf. Table I. Compared with classical ResNet110,
DenseNet (40,12), and VGG8, our models with similar pa-
rameter counts exhibit superior performance across all the
software and hardware metrics. For instance, PSP 256 12 ex-
hibits a more advanced performance in contrast to ResNet110.
In particular, the model’s accuracy experiences a 0.46% im-
provement, the crossbar utilization witnesses a 38.89% en-
hancement, latency is diminished by 4.48ms, energy efficiency
sees a 5.45TOPS/W increase, and the chip area is reduced by
5.27mm2.

To validate the effectiveness of the isotropic structure and
shift blocks, we also compare our models with ShiftNet [6], For
a fair comparison, we employ a consistent mixed-domain sim-
ulator to facilitate the examination under the same constraints
of the ShiftNet110 [6], which features a PSP-like structure.
Compared to ShiftNet110 with nearly identical parameters,
our PSP 128 8 outperforms it in all software and hardware
metrics. In particular, PSP 256 8 is regarded as the optimal
RRAM-based model as it achieves the best energy efficiency
and comparable accuracy with just 1M parameters.

To further verify the crossbar utilization of PSP networks
w.r.t crossbar utilization, we compare them with other advanced
CIM accelerator works. At 256 × 256 fixed crossbar sizes,
Chen et al. [11] measures the MLP, ResNet50, ResNet152, and
DenseNet (100,24) attaining the utilization of 65%, 56%, 46%,
42%, respectively. Krishnan et al. [18] optimized the utilization
of these models, reporting 81%, 80%, 76%, and 66%. Our PSP
networks, PSP 256 16 and PSP 256 12, outperformed these
models with crossbar utilization of 95% and 93%, respectively,
under the same constraints.

VI. CONCLUSION

This work devises a novel mixed-domain digital-analog
architecture that leverages an isotropic shift-pointwise network
(viz. PSP or SP) to achieve near-100% crossbar utilization,
leading to a lower latency and higher energy efficiency versus
conventional pyramidal CNNs. The proposed PSP and SP
networks further capitalize on the mixed-domain attributes of
RRAM circuits, namely, by exploiting digital shifts for efficient
spatial mixing and analog RRAM pointwise operations for
channel mixing. A reconfigurable and energy-efficient shift
module is newly designed to enable streamlined shift opera-
tions. Through an algorithm-hardware co-design, the proposed
RRAM-optimized lightweight models demonstrate clear advan-
tages over existing RRAM-based CNNs, demonstrating a state-
of-the-art INT8 accuracy of 94.88% (76.55%) on the CIFAR-10
(CIFAR-100) dataset with only 1.6M parameters, thus setting
a new yardstick for RRAM-based AI accelerators.

VII. ACKNOWLEDGEMENT

This work was supported by the Mainland-Hong Kong
Joint Funding Scheme Project MHP/066/20, the Theme-based
Research Scheme (TRS) project T45-701/22-R, and in part by
the General Research Fund (GRF) project 17209721 of the
Research Grants Council (RGC), Hong Kong SAR.

REFERENCES

[1] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[2] G. Huang et al., “Densely connected convolutional networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 4700–4708.

[3] W. Wu et al., “A methodology to improve linearity of analog RRAM for
neuromorphic computing,” in 2018 IEEE symposium on VLSI technology.
IEEE, 2018, pp. 103–104.

[4] A. Trockman and J. Z. Kolter, “Patches are all you need?” Transactions
on Machine Learning Research, 2023.

[5] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al., “Mlp-
mixer: An all-mlp architecture for vision,” Advances in neural information
processing systems, vol. 34, pp. 24 261–24 272, 2021.

[6] B. Wu et al., “Shift: A zero flop, zero parameter alternative to spatial
convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9127–9135.

[7] C. Chu, Y. Wang, Y. Zhao, X. Ma, S. Ye, Y. Hong, X. Liang, Y. Han,
and L. Jiang, “PIM-Prune: Fine-Grain DCNN Pruning for Crossbar-
Based Process-In-Memory Architecture,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[8] X. Ma, G. Yuan, S. Lin, C. Ding, F. Yu, T. Liu, W. Wen, X. Chen, and
Y. Wang, “Tiny but Accurate: A Pruned, Quantized and Optimized Mem-
ristor Crossbar Framework for Ultra Efficient DNN Implementation,” in
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC), 2020, pp. 301–306.

[9] Y. Jeon and J. Kim, “Constructing fast network through deconstruction
of convolution,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[10] Y. Yang et al., “Synetgy: Algorithm-hardware co-design for convnet
accelerators on embedded fpgas,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 23–32. [Online]. Available: https:
//doi.org/10.1145/3289602.3293902

[11] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations, 2015.

[13] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[14] O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, pp. 211–252,
2015.

[15] C. Tao et al., “FAT: Frequency-aware transformation for bridging full-
precision and low-precision deep representations,” IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[16] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, 2018, pp. 4510–4520.

[17] S. Sarangi et al., “Deepscaletool: A tool for the accurate estimation of
technology scaling in the deep-submicron era,” in 2021 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2021, pp. 1–5.

[18] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-s. Seo, U. Y. Ogras, and
Y. Cao, “Interconnect-aware area and energy optimization for in-memory
acceleration of dnns,” IEEE Design & Test, vol. 37, no. 6, pp. 79–87,
2020.


