

DESIGN, AUTOMATION & TEST IN EUROPE

25 - 27 March 2024 · Valencia, Spain

The European Event for Electronic System Design & Test

FMTT : Fused Multi-head Transformer with Tensor-compression for 3D Point Clouds Detection on Edge Devices

Zikun Wei¹, Tingting Wang¹, Chenchen Ding¹, Bohan Wang¹, Ziyi Guan²^, Hantao Huang¹, and Hao Yu¹

¹School of Microelectronics, Southern University of Science and Technology, Shenzhen, China ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

^Presenter

Outline

Background

- Fused Multi-head Tensor-compression for Attention
- Tensorized 3D Point Clouds Network
- Experiment Results

Conclusion

Background:3D Point Clouds Detection

3D Point Clouds Detection Models [1][2]

[1] Y. Zhou and O. Tuzel, "Voxelnet: End-to-end learning for point cloud based 3d object detection," in CVPR, 2018, pp. 4490–4499.

[2] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu, "Voxel transformer for 3d object detection," in ICCV, 2021, pp. 3164–3173.

02 July 2024

Background:Network Compression

Tensor-train compression[3]

[3] C. Ding, H. Ren, Z. Guo, M. Bi, C. Man, T. Wang, S. Li, S. Luo, R. Zhang, and H. Yu, "Tt-lcd: Tensorized-transformer based loop closure detection for robotic visual slam on edge," in ICARM. IEEE, 2023, pp. 166–172.

02 July 2024

Comparison between Our Compressed Attention and Conventional Attention

Algorithm 1: Fused multi-head tensor-compression methods

- **input** : the input feature x, the rank selection space **output:** the output feature y, the selected ranks $r_1...r_d$
- 1 Five epochs pre-train for different ranks in rank selection space to get the average loss, number of parameters and floating point operations.
- 2 for $i \leftarrow 1$ to N do

3 |
$$C_{comp}^{r_i} = \theta \cdot \# PARAMs^{r_i} + \# FLOPs^{r_i}$$

$$4 \quad \left[\begin{array}{c} \mathbf{C}_{rank}^{r_i} = C_{loss}^{r_i} + \gamma \cdot C_{comp}^{r_i} \right]$$

- 5 $r_1...r_d$ = sorted(C_{rank})[:d], sort the C_{rank} and select the minimum d items' ranks.
- 6 for $i \leftarrow 1$ to d do
- 7 $\beta_i = Softmax(\alpha) = \frac{exp^{\alpha_i}}{\sum_{1}^{d} exp^{\alpha^i}}$, normalize the coefficients of each heads.
- 8 $y + = TTLinear_{r_i}(x) \cdot \beta_i$, apply the fused multi-head tenor-train compression and get the output feature

Tensorized 3D Point Clouds Network

 The Overall Model Architecture with Fused Multi-head Tensorized Blocks for Attention and Feed Forward

Experiment Results

TABLE I: The average accuracy and model size comparison on the KITTI dataset car category

Method	Mode	Easy	Acc(%) Mod.	Hard	Size
Part-A2 Net [16]	TSD	87.81	78.49	73.51	226MB
PV-RCNN [17]	TSD	90.25	81.43	76.82	50.1MB
PointRCNN [18]	TSD	86.96	75.64	70.70	14.9MB
VoxelNet [1] Patches [19] STD [20] PointPillars [8] HVNet [3] 3DSSD [21] SA-SSD [22]	SSD SSD SSD SSD SSD SSD SSD	77.47 88.67 87.95 82.58 87.21 88.36 88.75	65.11 77.20 79.71 74.31 77.58 79.57 79.79	57.73 71.82 75.09 68.99 71.79 74.55 74.16	78.26MB - - - - - - - - - - - - - - - - - - -
VoTr-SSD [4]	SSD	86.73	78.25	72.99	55.09MB
TT-VoTr-SSD(Ours)	SSD	89.35	77.58	73.27	9.12MB

TABLE II: Comparison between our fused multihead tensorized method and other compressed method

Method	GFLOPs	Easy	Acc(%) Mod.	Hard	Size
Baseline	10.4	86.73	78.25	72.99	55.09MB
Tensorized	5.84	84.77	71.82	66.77	8.96MB
QAT [5]	10.5	85.62	72.50	69.37	14.91MB
Sparsity [6]	5.26	85.46	70.81	67.44	28.31MB
FMTT	7.32	89.35	77.58	73.27	9.12MB

Experiment Results

Accuracy Comparison of Our Compressed Models with Different Ranks

Complexity Comparison of Our Compressed Operations with Different Ranks

02 July 2024

Conclusion

- An end-to-end 3D point clouds voxel transformer based model is fully compressed by the tensor-compression. In comparison with uncompressed model, it achieves 6.04× times compression rate and 2.62% accuracy improvements.
- A novel fused multi-head tensor compression for both attention and convolution is proposed to compress the model.
- A tensor-train rank selection strategy is proposed with consideration of model size, computation load and accuracy during training.

Thank you! Q&A

02 July 2024