
FMTT : Fused Multi-head Transformer with Tensor-compression
for 3D Point Clouds Detection on Edge Devices

Zikun Wei, Tingting Wang, Chenchen Ding, Bohan Wang, Ziyi Guan, Hantao Huang, and Hao Yu

School of Microelectronics, Southern University of Science and Technology, Shenzhen China

Abstract—The real-time detection of 3D objects represents
a grand challenge on edge devices. Existing 3D point clouds
models are over-parameterized with heavy computation load.
This paper proposes a highly compact model for 3D point clouds
detection using tensor-compression. Compared to conventional
methods, we propose a fused multi-head transformer tensor-
compression (FMTT) to achieve both compact size yet with high
accuracy. The FMTT leverages different ranks to extract both
high and low-level features and then fuses them together to
improve the accuracy. Experiments on the KITTI dataset show
that the proposed FMTT can achieve 6.04× smaller than the
uncompressed model from 55.09MB to 9.12MB such that the
compressed model can be implemented on edge devices. It also
achieves 2.62% improved accuracy in easy mode and 0.28%
improved accuracy in hard mode.

Index Terms—Deep Learning, 3D Object Detection, Tensor
Compression

I. INTRODUCTION

3D objects real-time detection is a critical and challenging
task in autonomous driving and robotics. Existing works [1]–
[3] adopt 3D convolution networks to extract voxel features
from point clouds. However, 3D convolution networks struggle
with capturing rich context information with limited receptive
fields. To overcome this problem, VoTr [4], a Transformer-
based 3D backbone is proposed to build long-range relation-
ships between voxels features and serve as a substitute for
conventional 3D convolution backbones. However, the large
model size of Transformers poses a challenge for deployment
on edge devices.

Model compression methods aim to reduce the complexity
of neural networks. One popular method is quantization-aware
training (QAT) [5], which reduces the bitwidth of network
weights and activations during training. However, QAT meth-
ods are time-consuming and require additional GPU memory
to train the quantization parameters. Network pruning [6] is
another method that removes redundant network structures but
involves a complex retraining procedure. Tensor-compression,
based on tensor decomposition, reduces the storage and com-
putational overhead of high-order tensors. It represents a tensor
as a series of low-rank tensors’ product, reducing parameter
counts and storage requirements. Tensor-compression uses
core tensors and factor matrices to represent the tensor,
capturing correlations between different modes. While tensor-
compression significantly reduces parameters and storage, it is
still challenging to capture important information from feature

Corresponding author: yuh3@sustech.edu.cn, huanght@sustech.edu.cn

maps, leading to lower accuracy compared to uncompressed
models.

In this work, we propose a novel fused multi-head
transformer-based tensor-compression model for 3D point
clouds detection. We achieve better accuracy with fewer pa-
rameters. The main contributions of our work are as follows: 1)
An end-to-end 3D point clouds voxel transformer based model
is fully compressed by the tensor-compression. In comparison
with uncompressed model, it achieves 6.04× times compres-
sion rate and 2.62% accuracy improvements. 2) A novel
fused multi-head tensor compression for both attention and
convolution is proposed to compress the model. 3) A tensor-
train rank selection strategy is proposed with consideration
of model size, computation load and accuracy during training.
Based on this selection strategy, rank 4 and rank 8 are selected
and fused to achieve 73.27% accuracy, which outperforms the
uncompressed model and rank 16 based tensor-compression
model with smaller model size.

II. RELATED WORK

A. 3D Point Clouds Detection Methods

3D object detection from point clouds data can be summa-
rized into 2 streams: point-based [7], [8] and voxel-based [1],
[2], [4]. Point-based detectors directly work on raw point data
for detection. For example, PointNet [7] processes raw point
data for detection. However, this method suffers from the large
number of input point data, resulting in a large memory usage.
On the other hand, voxel-based detectors will process point
clouds into voxel (voxelization) and then apply convolution
to detect objects. VoxelNet [1] uses sparse voxel grids and
introduces voxel feature embedding (VFE) layers to extract
voxel features. SECOND [2] employs sparse convolution to
efficiently convert voxels to Bird’s Eye View (BEV) maps. In
3D point clouds detection, VoTr [4] introduces transformer-
based modules like the sparse voxel module and submanifold
voxel module. However, VoTr’s large size poses challenges
for deployment on edge devices. Therefore, compressing the
model to make it smaller and faster is crucial. Our proposed
fused multi-head tensor-compression method reduces redun-
dant parameters significantly while maintaining slightly higher
accuracy compared to the uncompressed model.

B. Network Compression

Existing model compression strategy mainly focuses on
quantization and pruning. Quantization [5] is to decrease



Fig. 1: Visualization on 3D Car Detection for Automatic Drive
and the Intuitive Comparison between Uncompressed Model
and Factorization Model

the bit width from float 32 bits to int 8 bits, or even 4
bits whereas pruning method [6] is to set unimportant pa-
rameters to zero. These methods work well but reach their
limits to further compress the model. On the other hand,
an orthogonal method, low-rank factorization, can further
compress the model with or without quantization and pruning.
Low-rank factorization decomposes tensors using low-rank
tensors, which can effectively compress a large matrix to a
list of small matrices. For example, tensor-train decomposition
breaks down dimensions into a sequence of low-rank tensors,
which has been successfully applied to deep learning tasks,
such as loop closure detection in robotic visual SLAM [9],
video LSTM networks [10], and fall-detection model [11] [12],
showing its efficient performance. In this work, we propose
fused multi-head tensor-compression strategy to keep the size
small while keep the accuracy the same or even better than
the uncompressed model.

III. 3D POINT CLOUDS DETECTION

The goal of 3D point clouds detection is to extract valuable
information from point clouds and identify objects of interest,
such as vehicles, pedestrians, or buildings. Fig. 1 illustrates
the potential application and the data flow path of 3D point
clouds detection. The classic structure of 3D point clouds
detection involves voxelization module, backbone module and
detection head module. Voxelization module [2] used to take
raw point clouds as input and partition the space into voxels,
which decreases the sparsity of the raw data. The main ideas
of voxelization are grouping the data points according to the
voxel and encoding the voxel features. The 3D voxel grid size
is D′ = D

vD
, H ′ = H

vH
,W ′ = W

vW
, where D,H,W are the 3D

space range and vD, vH , vW are voxel size. After the grouping
process, the voxel feature comes to V ∈ RN×M×C , where N
represents numbers of voxels, M represents max points per
voxel and C represents the position x, y, z and reflect density
of points. Then a normalizer is applied to calculate mean value

which is formulated as:
Norm = Clamp(Sum(Vpoints),min),

VV FE = Sum(Vnum)/Norm
(1)

where the Vpoints means the point numbers of each vox-
els and clamp minimum to one ensures divisor is nonzero.
Sum(Vnum) calculates the sum of all points positions in
voxels so the new voxel feature comes from the average of
each voxels, which heavily decreases redundant data and keeps
information.

The primary challenge in 3D detection lies in the sparsity of
point clouds data, making it difficult to extract effective fea-
tures. Conventional 3D convolutional backbones used in voxel-
based detectors have limited receptive fields, hindering their
ability to capture essential contextual information required for
object recognition and localization. VoTr [4], a transformer-
based architecture, addresses this issue by leveraging self-
attention to establish long-range relationships between voxels.
To optimize the impact of Transformers on voxels, VoTr
incorporates the sparse voxel module and the submanifold
voxel module. VoTr consistently outperforms convolutional
baselines on the KITTI dataset and the Waymo Open dataset,
demonstrating its immense potential for practical applications.
However, the large parameter size and heavy computational
load of VoTr pose significant challenges for deploying it on
edge devices, limiting its real-life application. The parameters
and computations of VoTr primarily concentrate in the linear
layer and convolution layer. To address this, we propose fused
multi-head transformer tensor-compression (FMTT), which
not only reduces the parameter size but also improves the
model’s accuracy, as Fig. 1 shows. This compression technique
makes the transformer-based model more suitable for edge
devices, improving its practicality.

TABLE I: Notations in our fused multi-head tensorized model

Notations Descriptions

O, W , x, b Outputs, weights, inputs, bias
Y ,W ,X ,B Tensorized outputs, weights, inputs and bias
W ∈ RM×N Tensor W of size M ×N
Cm1 , Cm2 ..., Cmd Reshaped size of M
Cn1 , Cn2 ..., Cnd Reshaped size of N
Gk ∈ Rrk−1×pk×rk Tensor cores of tensor-train data format
G ∗
k (ik, jk) Tensor cores with double index

r0, r1, ..., rd Ranks of tensor cores
α1, α2, ..., αp Coefficients of FMTT before normalized
β1, β2, ..., βp Normalized coefficients of FMTT
G p∗
k (ik, jk) Tensor cores of each head with double index

#FLOPs Floating point operations
Cin, Cout Channel-in and channel-out of the feature
H,W Height and width of the feature
Crank The criterion of rank selection
Closs, Ccomp The criterion from loss and complexity
#PARAMs The parameters number of the operation

IV. TENSORIZED 3D POINT CLOUDS DETECTION
NETWORK

In this part, we present the whole tensorized 3D point clouds
network. The prototype of the model is VoTr [4] and we focus



on how to apply the fused multi-head tensor-compression
method on the model.

Fig. 2: The Overall Model Architecture with Fused Multi-head
Tensorized Blocks for Attention and Feed Forward

As shown in Fig. 2, the overall model is divided to vox-
elization module, 3D backbone module, 2D backbone module
and detection head. On the first step, the model obtains the
raw point clouds data from Lidar and the point clouds data
will be processed to voxel formation. The voxelization can
highly change the redundant sparse data to more efficient
voxel data. Then, the voxel will pass through the 3D back-
bone, which extracts 3D features and generate Bird’s Eye
View(BEV) features. The BEV features are verified by many
works that can embody 3D information in 2D features and
save the computation resources. Besides, the BEV features are
also easier for the object detection to extract features. After
obtaining the BEV features, the most significant 2D backbone
will extract the features before detection heads.

Overall, the 3D backbone is based on transformer, which is
first used in 3D object detection in VoTr [4]. The 3D back-
bone is mainly formulated by two transformer-based module,
submanifold voxel module and sparse voxel module. Those
two modules both have the attention blocks and Mlp blocks
and need lots of operations. And our proposed fused multi-
head tensor-compression attention block displaces the attention
block. Fig. 3 shows the comparison between the conventional
attention block and our compressed attention block. The details
of the fused multi-head tensor-compression attention will be
discussed in section V later. Furthermore, the fused multi-head
tensor-compression linear replaces the conventional linear as
the novel feed forward layer. In this way, tensorized multi-head
attention(TMA) block formulates as:

TMA(h) = TTLinear(Concat(h1, h2, ...hi))

hi = softmax(
TQi · TKT

i√
d

)TV i

TQi, TKi, TVi = Fused(H1, H2, ...,Hj)

Hj = TTLinear(x, rj)

(2)

where TTLinear represents the tensor-compression linear
function, hi is the head of attention, TQi, TKi, TVi represents
the tensorized query, key, value, Hj is the head of our method
and rj is the rank of tensor-compression. The 2D backbone
uses the pyramid structure, which has downsample blocks
and upsample blocks. Both downsample and upsample blocks

Fig. 3: Comparison between Our Compressed Attention and
Conventional Attention

are convolution-based module. The fused multi-head tensor-
compression convolution is applied here. Our compression
only compresses the weights without changing the inputs
and outputs so the pyramid structure still can downsample
and upsample the features layer by layer. We note that our
proposed method can also apply in other networks flexibly to
compress the linear or convolution layers.

V. FUSED MULTI-HEAD TENSOR-COMPRESSION FOR
ATTENTION

A. Tensor-Train Compression

In this section, we discuss the basic tensor compression
method. To compress the tensor with maximum feature re-
served, we choose tensor-train compression [13], which can
maintain more information and provide more diversity for the
features than traditional tensor decomposition method.

The normal form of linear function can be expressed as
O = Wx + b where O, W , x, b respectively denotes
the output, weight, input and the bias of the linear func-
tion respectively. To use tensor-train decomposition to sim-
plify the linear function with much fewer parameters, the
weight matrix W ∈ RM×N can be reshaped to a ten-

sor W ∈ RCm1×Cn1×...×Cmd
×Cnd , where M =

d∏
i=1

Cmi

and N =
d∏

i=1

Cni . For a more general discussion, give a

d-dimensional tensor Y ∈ Rp1×p2×...×pd as an example,
where Y (k1, k2, ..., kd) is a specific element of Y . Then
it can be approximated by a number of tensor cores Gk ∈
Rrk−1×pk×rk(k ∈ [1, d]), which can be represented as follows:

Y (k1, k2, ..., kd) = G1(k1)G2(k2)...Gd(kd) (3)



where rk is the rank of Gk. To consider each integer pk, if
it can be decomposed as pk = mk × nk for example, the Y
can be represented as Y ∈ Rm1×n1×m2×n2×...×md×nd with
G ∗
k ∈ Rrk−1×rk×mk×nk .
Besides, the tensor-train convolution layer is compressed in

the similar way. The difference between linear and convolution
is that convolution can extract the adjacent information from
the input feature. Previous work [14] uses a prepositive small
convolution layer and common tensor-train linear to replace
the convolution layer. It can extract adjacent features similar to
convolution operation but keep the model highly compressed.
We follow the same strategy as [14].

B. Fused Multi-head Tensor-Train Attention

In this part, we introduce our proposed tensor compression
method and compare it to the conventional attention block.
In the attention block, the compression rate using classic
tensor-train compression is difficult to set. As a result, it
easily loses the key features leading to a lower accuracy.
To tackle this issue, we propose the fused multi-head tensor-
compression method and apply it to the transformer. Following
the discussion in tensor-train compression, the compressed
weight can be expressed as:

W ((i1, j1)(i2, j2), ..., (id, jd)) =

G ∗
1 (i1, j1)G

∗
2 (i2, j2)...G

∗
d (id, jd)

(4)

where G ∗(i, j) represents the tensor core with double indexes.
Similarly, x and b can be reshaped into d-dimentional ten-
sors X ∈ Rn1×n2×...×nd and B ∈ Rm1×m2×...×md . As
a result, the output y can become as d-dimentional tensor
Y ∈ Rm1×m2×...×md . Therefore, linear function in trans-
former attention blocks can be tensorized and decomposed
as:

Y (i1, i2, ..., id) =

n1∑
j1=1

n2∑
j2=1

...

nd∑
jd=1

[G ∗
1 (i1, j1)G

∗
2 (i2, j2)

...G ∗
d (id, jd)X (j1, j2, ..., jd)] + B(i1, i2, ..., id)

(5)

In transformer, multi-head attention blocks use multi-head
technique to extract different features from different heads. In
our work, we also want to extract different features with dif-
ferent ranks. Furthermore, we propose the normalized weight
coefficients for each heads to allocate different weights’ coeffi-
cients during training. In this way, the more important features
are allocated to higher coefficients. Moreover, it uses only
one training process for both the weights and the coefficients,
which avoids further fine tuning or retraining. Specifically, the
coefficients are formulated as:

βp = Softmax(α) =
expαp∑d
1 exp

αp

(6)

where the βp represents the final normalized coefficient of each
head. The overall operation of multi-head tensor-compression

methods can be expressed as:

Y (i1, i2, ..., id) =

q∑
p=1

βp{
n1∑

j1=1

n2∑
j2=1

...

nd∑
jd=1

[G p∗
1 (i1, j1)G

p∗
2

(i2, j2)...G
p∗
d (id, jd)X (j1, j2, ..., jd)] + Bp(i1, i2, ..., id)}

(7)

C. Rank Selection

Rank in tensor-train compression is a significant hy-
per parameter, which affects accuracy, number of param-
eters and FLOPs. To balance the accuracy and computa-
tion load, we firstly discuss the FLOPs with comparisons
of different ranks and different operations. Without losing
generality, a calculation example is given as follows. If
the input feature is F ∈ RCin×H×W , which can be re-
shaped to F ∈ RCin1

×Cin2
×Cin3

×Cin4
×H×W and output

feature is F ∈ RCout×H×W , which can be shaped to F
∈ RCout1

×Cout2
×Cout3

×Cout4
×H×W . In this case, Cin =

4∏
i=1

Cini
and Cout =

4∏
i=1

Couti . So the computation load of

our method with ranks [r1, r2, r3, r4] will be expressed as:

#FLOPsTT = H ×W ×
4∑

i=1

(

i+4∏
k=i

Ck

i+1∏
k=i

rk), (8)

where C1 to C4 represent Cin1
to Cin4

, C5 to C8 represent
Cout1 to Cout4 and r5 is one in this case.

From the calculation, we know the effects of different ranks.
To select the ranks more precisely, here a complexity-accuracy
co-aware rank selection criterion function is applied as:

Crank = Closs + γ · Ccomp (9)

Ccomp = θ ·#PARAMs+#FLOPs (10)

where the Crank is the final criterion we use to judge and
select ranks. The Closs is the cross entropy loss, #PARAMs
represents the number of parameters, #FLOPs represents the
GFLOPs of the operation, γ and θ are the manual-set param-
eters to control the priority of different parts. Compare with
different Crank, we select ranks with best trade-off for fused
multi-head tensor-compression model. Detailed experimental
results will be discussed in section VI.

Overall, we summarize our algorithm in Algorithm 1. It
begins at a short pre-train to select the efficient ranks for
multi-head. Then each head will use tensor-train operation
and multiply the trained coefficient normalized by softmax,
and finally fuse them as outputs.

VI. EXPERIMENTAL RESULTS

A. Experiment Set-up

The dataset used in this work is KITTI dataset [15]. The
KITTI dataset is a large-scale computer vision dataset de-
signed to support research in the field of autonomous driving,
and it provides a rich set of sensor data that can be used
to develop and evaluate algorithms for tasks such as object
detection, tracking, and segmentation. In 3D Lidar data, it has
7481 items for training and 7518 items for testing. To compare



Algorithm 1: Fused multi-head tensor-compression
methods

input : the input feature x, the rank selection space
output: the output feature y, the selected ranks r1...rd

1 Five epochs pre-train for different ranks in rank
selection space to get the average loss, number of
parameters and floating point operations.

2 for i← 1 to N do
3 Cri

comp = θ ·#PARAMsri +#FLOPsri

4 Cri
rank = Cri

loss + γ · Cri
comp

5 r1...rd = sorted(Crank)[:d], sort the Crank and select
the minimum d items’ ranks.

6 for i← 1 to d do
7 βi = Softmax(α) = expαi∑d

1 expαi , normalize the
coefficients of each heads.

8 y+ = TTLinearri(x) · βi, apply the fused
multi-head tenor-train compression and get the
output feature

with other works, we use the mean Average Precision (mAP)
with Intersection over Union (IoU) 0.7 for car detection as
the comparison testing item. Our results show the compressed
model accuracy, computation load measured in GFLOPs and
model size. As such, these results indicate that our method
could be applied to most edge devices with reduced model
size and computation load.

B. Performance Comparison

To compare the performance of our fused multi-head ten-
sor compression method, we firstly compare our compressed
model with the other 3D point clouds models. Secondly,
we compare with the other compression methods which are
applied on the same model.

For the details about training, we train our model in 100
epochs with learning rate 0.003. Because of the small size
models required on edge devices, we mainly compare with
Single-Stage Detector (SSD) models. Table II shows the whole
comparison results. Comapred to the VoTr-SSD model, our
TT-VoTr-SSD model achieves 6.04 × smaller size and 2.62%
improvement on easy mode and 0.28% improvement on hard
mode.

In table III, we compare our fused multi-head tensor-
compression method with other compressed method on the
same model. Baseline is the original model from VoTr [4]
using nothing to compress. The tensorized model applies one-
head rank 8 tensor-train on the model and it cannot achieve
a satisfactory performance. The quantization aware training
(QAT) method we used is learned step size quantization
(LSQ) [23]. LSQ has been proved that it can achieve better
performance than most quantization methods. In our training,
we use the original model as the pre-trained model and
train another 50 epochs with 1e− 4 learning rate. Structured
sparsity learning (SSL) [6] is more regular and friendly to
hardware design than unstructured sparsity. In our work, we

TABLE II: The average accuracy in easy, moderate and hard
mode and model size comparison on the KITTI dataset car
category by 40 recall positions.

Method Mode Easy
Acc(%)
Mod. Hard Size

Part-A2 Net [16] TSD 87.81 78.49 73.51 226MB
PV-RCNN [17] TSD 90.25 81.43 76.82 50.1MB

PointRCNN [18] TSD 86.96 75.64 70.70 14.9MB

VoxelNet [1] SSD 77.47 65.11 57.73 78.26MB
Patches [19] SSD 88.67 77.20 71.82 -

STD [20] SSD 87.95 79.71 75.09 -
PointPillars [8] SSD 82.58 74.31 68.99 18.4MB

HVNet [3] SSD 87.21 77.58 71.79 77.29MB
3DSSD [21] SSD 88.36 79.57 74.55 30.0MB
SA-SSD [22] SSD 88.75 79.79 74.16 40.7MB

VoTr-SSD [4] SSD 86.73 78.25 72.99 55.09MB
TT-VoTr-SSD(Ours) SSD 89.35 77.58 73.27 9.12MB

TABLE III: Comparison between our fused multi-head ten-
sorized method and other compressed methods

Method GFLOPs Easy
Acc(%)
Mod. Hard Size

Baseline 10.4 86.73 78.25 72.99 55.09MB

Tensorized 5.84 84.77 71.82 66.77 8.96MB

QAT [5] 10.5 85.62 72.50 69.37 14.91MB

Sparsity [6] 5.26 85.46 70.81 67.44 28.31MB

FMTT 7.32 89.35 77.58 73.27 9.12MB

prune each channel weights with 50% sparsity and calculate
the size and GFLOPs of one single operation. Through the
comparison, our fused multi-head tensorized model achieves
the best performance, much higher compression rate than
quantization and sparsity. Meanwhile, the GFLOPs is still less
than the original model and the quantized model, but only a
little higher than sparsity.

C. Ablation Studies

In the ablation studies, we analyse the performance of
different ranks in several aspects. Through the utilization
of tensor-train algorithm, the only one hyperparameter rank
controls the extended dimensions and determines accuracy,
the compression rate and the FLOPs. From the selection
method proposed in section IV, our fused multi-head tensor-
compression model finally chooses the rank 4 and rank 8 at
each head to extract different features. In our experiment, we
perform the experiments with different ranks includes rank
2, rank 4, rank 8, rank 16. To prove our rational selection



Fig. 4: Accuracy Comparison of Our Compressed Models with
Different Ranks

Fig. 5: Complexity Comparison of Our Compressed Opera-
tions with Different Ranks

method, the model training results, the memory usage and the
FLOPs of each operator are shown in Fig. 4 and Fig. 5. In
Fig. 4, baseline is the VoTr model illustrated by dotted lines.
In Fig. 5, baseline is the convolution operator. From figures,
we know the accuracy of all ranks are lower than the baseline
but rank 2 remarkably has worse performance. FLOPs is also
an important index for forwarding rate so rank 16 operation
is too complex to forward in model. Therefore, the selection
results of rank 4 and rank 8 as each head of our model are
reasonable.

VII. CONCLUSION

In this paper, we present a fused multi-head transformer
with tensor-compression for 3D point clouds detection. We
further propose a rank selection strategy for the fused multi-
head tensor-compression method to have a higher compression
rate without accuracy drop.

VIII. ACKNOWLEDGEMENT

This work was supported in part by the National Key
RD Program of the Ministry of science and technol-
ogy under Grant 2021YFE0204000, and in part by the
Shenzhen Science and Technology Program under Grant
KQTD20200820113051096.

REFERENCES

[1] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018, pp. 4490–4499.

[2] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[3] M. Ye, S. Xu, and T. Cao, “Hvnet: Hybrid voxel network for lidar based
3d object detection,” in CVPR, 2020, pp. 1631–1640.

[4] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu,
“Voxel transformer for 3d object detection,” in ICCV, 2021, pp. 3164–
3173.

[5] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” NeurIPS, vol. 29, 2016.

[7] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in CVPR, 2017, pp.
652–660.

[8] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
CVPR, 2019, pp. 12 697–12 705.

[9] C. Ding, H. Ren, Z. Guo, M. Bi, C. Man, T. Wang, S. Li, S. Luo,
R. Zhang, and H. Yu, “Tt-lcd: Tensorized-transformer based loop closure
detection for robotic visual slam on edge,” in ICARM. IEEE, 2023, pp.
166–172.

[10] C. Man, C. Chang, C. Ding, A. Shen, H. Ren, Z. Guan, Y. Cheng, S. Luo,
R. Zhang, N. Wong, and H. Yu, “Ranksearch: An automatic rank search
towards optimal tensor compression for video lstm networks on edge,”
in DATE, 2023, pp. 1–2.

[11] Z. Guan, S. Li, Y. Cheng, C. Man, W. Mao, N. Wong, and H. Yu, “A
video-based fall detection network by spatio-temporal joint-point model
on edge devices,” in DATE, 2021, pp. 422–427.

[12] Y. Cheng, G. Huang, P. Zhen, B. Liu, H.-B. Chen, N. Wong, and H. Yu,
“An anomaly comprehension neural network for surveillance videos on
terminal devices,” in DATE, 2020, pp. 1396–1401.

[13] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011.

[14] Y. Pan, M. Wang, and Z. Xu, “Tednet: A pytorch toolkit for tensor de-
composition networks,” Neurocomputing, vol. 469, pp. 234–238, 2022.

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” IJRR, vol. 32, no. 11, pp. 1231–1237, 2013.

[16] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8, pp.
2647–2664, 2020.

[17] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection,” in CVPR,
2020, pp. 10 529–10 538.

[18] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in CVPR, 2019, pp. 770–779.

[19] J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler, and
S. Hochreiter, “Patch refinement–localized 3d object detection,” arXiv
preprint arXiv:1910.04093, 2019.

[20] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “Std: Sparse-to-dense 3d
object detector for point cloud,” in ICCV, 2019, pp. 1951–1960.

[21] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage
object detector,” in CVPR, 2020, pp. 11 040–11 048.

[22] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in CVPR, 2020, pp.
11 873–11 882.

[23] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.


