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Surging Sizes in NLP Models

• Rapid Rise: NLP model sizes increase 10x annually

• This surge presents profound challenges for deployment on resource-

constrained devices.
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Related Works

Quantization-Aware Training (QAT): Quantization is integrated into the model's training process.

Post-Training Quantization (PTQ): Quantizing the parameters of a LLM after the training phase.
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Related Works: OBQ GPTQ

GPTQ: Layer-Wise Layer-aware Quantization.

APTQ: Layer-Wise Attention-aware Quantization.

Guide by Optimal Brain Quantization(OBQ):

𝛿𝐸 =
𝜕𝐸

𝜕𝐰

𝑇

⋅ 𝛿𝐰 +
1

2
𝛿𝐰𝑇 ⋅ 𝐇 ⋅ 𝛿𝐰 + 𝑂 ∥ 𝛿𝐰 ∥3

Taylor Series of the error function(or loss function):

𝐸 = ∥ 𝐖𝐗 − ෡𝐖𝐗 ∥ 2
 2

𝐸 = ∥ 𝐌𝐇𝐀 𝐖, 𝐗 − 𝐌𝐇𝐀( ෡𝐖, 𝐗) ∥ 2
 2

GPTQ: 

Layer-aware

APTQ: Attention-aware

Multi-Head Attention (MHA)

Global Optima

Local Optima

Ignored 

4



APTQ Overview

Step1: Attention-aware Quantization
Step2: Hessian-trace

Mixed-Precision
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Hessian-Attention-based Quantization

GPTQ Weight updating formula：

APTQ Weight updating 
formula：

The weights are updated according to 

the gradient of the whole Attention layer

𝑯𝑭=𝟐𝑿𝑭𝑿𝑭
𝑻

𝑯ෝ𝒘=𝟐 ∙ [𝑭′( ෝ𝒘) ∙ 𝑭′( ෝ𝒘)𝑻]
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Hessian-Trace-based Mixed-Precision Quantization

where 𝑅 denotes the proportion of 

weights quantized at 4 bits 

(In this figure, 𝑅 = 0.6)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑡𝑠 = 4 × 𝑅 + 2 × (1 − 𝑅)
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Mixed-precision metric:

average Hessian trace values



APTQ Algorithm
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Experiment
Better PPL under low-bit weight-only quantization 

Method Avg bit C4 Wikitext-2

LLaMa-7B 16 5.22 5.68

GPTQ 4.0 5.62 8.14

OWQ 4.01 5.56 7.15

LLM-QAT 4.0 7.40 10.90

PB-LLM-20% 3.4 20.61 17.19

APTQ 4.0 5.23 6.45

APTQ-75% 3.5 5.54 6.54

APTQ-50% 3.0 6.24 6.76

Table 1: Comparison of Perplexity of Quantized LLaMa Models on C4 and WikiText-2 Datasets.
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Experiment
Better PPL under mixed-precision quantization 
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Experiment
Better zero-shot accuracy under mixed-precision quantization 

Table 2: Zero-shot accuracy of quantized LLaMa models on common sense reasoning tasks.
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Conclusion

• APTQ integrates attention-based gradients with Hessian 
optimization, significantly enhancing quantization precision.

• APTQ uses a novel Hessian trace-driven mixed-precision 
scheme to optimize performance by adjusting bitwidths based on 

layer sensitivity.

• APTQ achieves near full-precision results at 4-bit quantization 
and demonstrates state-of-the-art (SOTA) zero-shot performance 

compared to other methods in experiments on LLaMa models.
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Thank you for your attention
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