

APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models

Ziyi Guan^{1,2^}, Hantao Huang¹, Yupeng Su¹, Hong Huang¹, Ngai Wong² and Hao Yu¹ ¹School of Microelectronics, Southern University of Science and Technology, Shenzhen ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Surging Sizes in NLP Models

- Rapid Rise: NLP model sizes increase 10x annually
- This surge presents profound challenges for deployment on resourceconstrained devices.

Related Works

Quantization-Aware Training (QAT): Quantization is integrated into the model's training process.

Post-Training Quantization (PTQ): Quantizing the parameters of a LLM after the training phase.

Related Works: OBQ GPTQ

Guide by Optimal Brain Quantization(OBQ):

Taylor Series of the error function(or loss function):

$$\delta E = \left(\frac{\partial E}{\partial \mathbf{w}}\right)^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(\| \delta \mathbf{w} \|^3) \quad \text{Ignored}$$

GPTQ: Layer-Wise Layer-aware Quantization.

 $E = \| \mathbf{W}\mathbf{X} - \widehat{\mathbf{W}}\mathbf{X} \|_2^2$ \longrightarrow Local Optima

APTQ: Layer-Wise Attention-aware Quantization.

 $E = \| MHA(W, X) - MHA(\widehat{W}, X) \|_{2}^{2} \longrightarrow Global Optima$

APTQ Overview

Hessian-Attention-based Quantization

Hessian-Trace-based Mixed-Precision Quantization

Mixed-precision metric: average Hessian trace values

Average bits =
$$4 \times R + 2 \times (1 - R)$$

where *R* denotes the proportion of weights quantized at 4 bits (In this figure, R = 0.6)

APTQ Algorithm

Input: Pre-trained model weights *W*, blocksize *B*, Hessian matrix *H*, quantization function quant, Layer names *layerName*, Ratio of 4-bit in 2/4 mixed-precision *R*.

- 1: Initialize quantized weight matrix $Q \leftarrow 0_{d_{row} \times d_{col}}$.
- 2: Initialize block quantization error matrix $E \leftarrow 0_{d_{row} \times B}$.
- 3: Step 1: 4-bit Hessian-Attention-Based Quantization
- 4: for i = 0, B, 2B, ... do
- 5: **for** j = i, ..., i + B 1 **do**
- 6: if <u>"self_attn.k_proj"</u> in layerName then
- 7: $H_{\hat{W}}^{K} = 2\left[\frac{\partial F}{\partial W^{K}} \cdot \frac{\partial F}{\partial W^{K}}^{T}\right] \text{ from Equation (13)}$
- 8: $Q_{;,j}^{K} \leftarrow \operatorname{quant}(W_{;,j})$

9:
$$E_{:,j-i}^{\tilde{K}} \leftarrow (W_{:,j}^{K} - Q_{:,j}^{K}) / [H_{\hat{W}}^{-1}]_{jj}^{K} \text{ based on Equation (16)}$$

10:
$$W_{;j:(i+B)}^{K} \leftarrow W_{;j:(i+B)}^{K} - E_{;j-i}^{K} \cdot (H_{\hat{W}}^{-1})_{;j:(i+B)}^{K} \text{ based on Equation (17)}$$

- 11: For self_attn.Q, V, and O projection layers, similar updates are applied
- 12: Compute the average Hessian trace for each layer in block i: (i + B).
- 13: end if
- 14: end for
- 15: end for

Output: The resulting quantized model weights *Q* are characterized by scale, zero-point, and quantization error.

16: Step 2: Hessian-trace-based Mixed-Precision Quantization

- 17: Calculate Hessian trace values for each layer, and order them from highest to lowest, starting with the previously established 4-bit quantization.
- 18: Determine the layers for mixed-precision quantization based on the computed Hessian trace values and *R*.
- 19: **for** each selected layer **do**
- 20: Calibrate the bit allocation in line with each layer's Hessian trace sensitivity and *R*.
- 21: Implement 2/4 bit mixed-precision quantization
- 22: end for

Experiment

Better PPL under low-bit weight-only quantization

 Table 1: Comparison of Perplexity of Quantized LLaMa Models on C4 and WikiText-2 Datasets.

Method	Avg bit	C4	Wikitext-2
LLaMa-7B	16	5.22	5.68
GPTQ	4.0	5.62	8.14
OWQ	4.01	5.56	7.15
LLM-QAT	4.0	7.40	10.90
PB-LLM-20%	3.4	20.61	17.19
APTQ	4.0	5.23	6.45
APTQ-75%	3.5	5.54	6.54
APTQ-50%	3.0	6.24	6.76

Experiment

Experiment

Better zero-shot accuracy under mixed-precision quantization

Table 2: Zero-shot accuracy of quantized LLaMa models on common sense reasoning tasks.

Model	LLaMa-7B						LLaMa-13B						
Method	Avg bit	PIQA	Hellaswag	Arc-E	Arc-C	WinoGrande	$\overline{Acc}\%\uparrow$	PIQA	Hellaswag	Arc-E	Arc-C	WinoGrande	$\overline{Acc}\%\uparrow$
FP16	16	79.2	76.2	72.8	44.7	69.9	68.56	80.3	79.0	74.8	47.9	72.7	70.94
RTN [12]	4.0	77.3	72.7	68.8	43.1	66.9	65.76	79.1	76.8	72.6	46.5	70.5	69.10
SmoothQuant [18]	4.0	76.4	68.1	67.3	39.6	66.0	63.48	77.9	74.2	76.3	45.5	69.7	68.72
FPQ [11]	4.0	77.8	75.0	72.4	41.7	69.0	66.60	79.4	77.7	72.8	47.3	71.5	69.74
LLM-QAT [12]	4.0	78.3	74.0	70.0	41.7	69.0	66.60	79.4	77.7	72.8	47.3	71.5	69.74
GPTQ [6]	4.0	76.0	69.4	66.9	43.0	66.7	64.40	79.8	77.7	73.2	45.9	72.6	69.84
PB-LLM 30% [16]	4.1	78	74.3	69.0	42.3	69.7	66.66	-	-	-	-	-	-
PB-LLM 10% [16]	2.7	67.8	68.1	58.7	39.6	67.4	60.32	-	-	-	-	-	-
APTQ	4.0	78.6	75.7	72.4	44.4	69.3	68.08	79.9	78.8	73.9	47.0	72.1	70.34
APTQ-90%	3.8	78.8	75.9	73.6	43.5	69.4	68.24	79.4	78.8	73.8	47.8	72.6	70.48
APTQ-80%	3.6	78.0	75.3	70.2	43.7	69.5	67.34	79.5	78.2	72.8	46.5	72.6	69.92
APTQ-75%	3.5	77.5	74.5	68.7	44.2	70.2	67.02	79.3	77.6	71.8	46.1	73.2	69.60
APTQ-70%	3.4	77.6	73.4	66.9	41.3	68.9	65.62	78.3	77.5	71.4	46.3	72.5	69.20
APTQ-60%	3.2	76.8	72.1	63.1	39.3	69.5	64.16	78.6	74.2	69.5	44.2	69.5	67.20
APTQ-50%	3.0	74.5	68.3	57.9	36.4	65.3	60.48	74.4	71.2	64.1	41.0	68.0	63.74

Conclusion

- APTQ integrates **attention-based gradients** with Hessian optimization, significantly enhancing quantization precision.
- APTQ uses a **novel Hessian trace-driven mixed-precision** scheme to optimize performance by adjusting bitwidths based on layer sensitivity.
- APTQ achieves near full-precision results at 4-bit quantization and demonstrates state-of-the-art (SOTA) zero-shot performance compared to other methods in experiments on LLaMa models.

SHAPING THE NEXT GENERATION OF ELECTRONICS

JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

Thank you for your attention