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ABSTRACT
Large Language Models (LLMs) have greatly advanced the natural
language processing paradigm. However, the high computational
load and hugemodel sizes pose a grand challenge for deployment on
edge devices. To this end, we propose APTQ (Attention-aware Post-
Training Mixed-Precision Quantization) for LLMs, which considers
not only the second-order information of each layer’s weights, but
also, for the first time, the nonlinear effect of attention outputs on
the entire model. We leverage the Hessian trace as a sensitivity
metric for mixed-precision quantization, ensuring an informed
precision reduction that retains model performance. Experiments
show APTQ surpasses previous quantization methods, achieving
an average of 4 bit width a 5.22 perplexity nearly equivalent to full
precision in the C4 dataset. In addition, APTQ attains state-of-the-
art zero-shot accuracy of 68.24% and 70.48% at an average bitwidth
of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its
effectiveness to produce high-quality quantized LLMs.
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1 INTRODUCTION
Large Language Models (LLMs), such as ChatGPT [14], OPT [19],
LLaMA [17], etc., exhibit impressive performance across various
tasks. However, deploying these models on edge devices is challeng-
ing due to their exorbitant computational demands and memory
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footprints. Existing model compression solutions such as prun-
ing [1] and neural architecture search [2] often require model re-
training, which is extremely time-consuming and expensive for
billion-parametermodels. Recently, post-training quantization (PTQ)
methods, such as GPTQ [6], have been proposed and achieved rel-
atively high accuracy without retraining. However, GPTQ only
considers the weight quantization strategy in the scope of a single
layer as an optimization problem to minimize | |𝑾𝑿 − �̂�𝑿 | |22, with
𝑾 , �̂� and 𝑿 representing float weights, quantized weights and in-
puts, respectively. This simplification fails to consider the complex
and nonlinear effects such as softmax in the attention computation,
and leads to a sub-optimal solution.

To achieve lower bitwidths without sacrificing the accuracy on
edge devices, this paper presents an Attention-aware Post-Training
Mixed-Precision Quantization (APTQ) technique, which is designed
to consider the quantization optimization problem within the scope
of the attention block including the nonlinear softmax operation.
Specifically, APTQ utilizes gradients derived from the attention
output and develops a second-order Hessian optimization strategy
to quantize theweights. By doing so, APTQ significantly reduces the
quantization error in these crucial components, thereby preserving
the model’s integrity throughout compression.

Furthermore, APTQ proposes a novel Hessian trace-based quan-
tization sensitivity metric to implement mixed-precision quantiza-
tion to further compress LLM models. This approach judiciously
applies varying bitwidths across the model parameters to fit the
limited memory size on edge devices with balanced size and ac-
curacy. As a result, APTQ constitutes a mixed-precision 2/4-bit
hybrid scheme with performance comparable to a uniform 4-bit
representation. In particular, APTQ produces a compressed model
close to its full-precision counterpart, and outperforming the GPTQ
method especially in the realm of ultra-low-bit quantization scenar-
ios. Through comprehensive experiments on the LLaMA-7B and
LLaMA-13B models [17], the effectiveness of APTQ is validated on
both perplexity and zero-shot performance, thus entailing a viable
solution for the deployment of LLMs on edge devices.

The main contributions of this paper are threefold:
• This is the first work to quantize LLMs by integrating the
attention-based gradients with second-order Hessian op-
timization, leading to a nuanced update mechanism that
enhances the precision throughout the quantization process.
• An innovative Hessian trace-driven mixed-precision quanti-
zation scheme is proposed that judiciously allocates high/low
bitwidths across different layers based on their sensitivity,
optimizing model performance while maintaining efficiency.
• Through extensive experimentation on the LLaMa models,
APTQ not only achieves state-of-the-art (SOTA) results on
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the C4 dataset [15] but also attains near full-precision per-
plexity at an average quantization of 4 bits. In zero-shot tasks,
APTQ also demonstrates superior performance compared to
the SOTA approaches.

2 RELATEDWORK
To deploy large models on edge devices, quantization is a versatile
technique for reducing model size and computation. Quantization-
Aware Training (QAT) is known to be effective by integrating the
quantization process into the training process. A representative
work is LLM-QAT [12], which proposes data-free distillation. How-
ever, this method introduces new trainable parameters, necessitates
high-end GPU computational resources, and incurs a large time con-
sumption. In contrast, Post-Training Quantization (PTQ) employs
moderate resources to quantize pre-trained models without model
retraining. Recent work, such as SpQR [3] and SqueezeLLM [8],
compress most weights to 4 bits but maintain outlier weights at 16
bits, which complicates the inference process with both 4-bit and
16-bit inference.

SmoothQuant [18] introduces a per-channel scaling transforma-
tion that effectively smooths the magnitudes to address the chal-
lenge of quantizing activations. GPTQ [6] and OBQ [5] introduce
an innovative weight quantization method based on approximate
second-order information, ensuring high accuracy and efficiency
in the quantization process. Our work shares the same ethos as
GPTQ but additionally considers the softmax and matmul opera-
tions within the attention computation to formulate the quantiza-
tion problem, resulting in improved accuracy.

Mixed-precision quantization offers a trade-off strategy for edge
devices to maintain the accuracy with minimized model size. Exist-
ing works usually define some metrics to determine the quantiza-
tion sensitivity of each layer. One representative work is HAWQ-V2
[4], which adopts Hessian trace for CNN layer sensitivity assess-
ment and utilizes the Hutchinson algorithm to approximately esti-
mate the Hessian trace. Our APTQ method also employs Hessian
trace for sensitivity but adopts the Levenberg-Marquardt approxi-
mation [9] to directly calculate the Hessian trace with respect to
the attention output, which is also an extension of GPTQ [6] by
further considering the nonlinear operation (softmax) and matmul
in the attention output. Another close related work is PB-LLM [16],
which adopts a mixed 1-bit and fp-16 (half floating point) precision
based on the Hessian values. Extreme low-bit quantization (1bit)
is challenging for the accuracy. However, our APTQ method opts
for a 2-bit and 4-bit mixed-precision quantization offering a better
accuracy with the same model size comparing to PB-LLM. The
effectiveness of this strategy is demonstrated in Section 4, where
our method shows superior performance in terms of efficiency and
model compression when compared to PB-LLM.

3 ALGORITHM
This section starts with the preliminaries to outline the evolution of
quantization techniques from optimal brain quantization (OBQ) [5]
to our proposed Hessian-attention-based quantization. We then
propose an Attention-aware Post-Training Mixed-Precision Quan-
tization, APTQ, to further compress the LLMs.

3.1 Preliminaries
General Quantization Framework. Quantization aims to reduce
weight precision in neural networks, thus conserving computa-
tional resources. The general goal is to find a quantized weight
matrix �̂� that approximates full precision output, minimizing the
squared error. This process can be formally expressed as:

argmin�̂� | |𝑾𝑿 − �̂�𝑿 | |22 . (1)

In this equation, 𝑿 represents the input to the layer, and �̂� denotes
the quantized weight.
Optimal Brain Quantization (OBQ). Optimal Brain Quantiza-
tion (OBQ) [5] is an innovative method that minimizes quantiza-
tion errors by treating each neural network weight independently.
The core of OBQ lies in iteratively quantizing each weight and
adjusting the remaining unquantized weights to compensate for
the quantization-induced errors. This approach is mathematically
articulated as follows:

𝑤𝑞 = argmin𝑤𝑞
quant(𝑤𝑞) −𝑤𝑞
[𝐻−1
𝐹
]𝑞𝑞

, (2)

𝛿𝐹 = −
𝑤𝑞 − quant(𝑤𝑞)
[𝐻−1
𝐹
]𝑞𝑞

· (𝐻−1𝐹 ):,𝑞, (3)

𝐻−1−𝑞 = (𝐻−1 − 1
[𝐻−1]𝑞𝑞

𝐻−1:,𝑄𝐻
−1:
𝑞 )−𝑝 . (4)

The Hessian matrix 𝐻𝐹 = 2𝑋𝐹𝑋𝑇𝐹 guides the selection of the quan-
tization candidate 𝑤𝑞 from the full-precision weights 𝐹 , and the
update 𝛿𝐹 is calculated to minimize quantization error, as formal-
ized in equations (2), (3) and (4) with quant(𝑤) mapping weights
to their nearest quantized values. Building upon OBQ, GPTQ [6]
extends the principles by adopting the fixed order weights update
strategy and Cholesky reformulation to speed up the computation.

3.2 Hessian-Attention-based Quantization
While GPTQ effectively minimizes layer-specific quantization er-
rors, it overlooks the intricate nonlinearities in attention mech-
anisms, leading to suboptimality. APTQ, by contrast, embraces a
holistic quantization strategy, factoring in the entire attention block
and its nonlinear dynamics, which sharpens the precision of the
quantized model, particularly in low-bitwidth scenarios.

As shown in Figure.1, we present the advanced architecture
of APTQ, demonstrating its comprehensive quantization strategy.
Unlike GPTQ, which primarily processes loss in the current layer,
APTQ integrates a full-scope analysis of the attention mechanism,
including the𝑄 , 𝐾 ,𝑉 ,𝑂 matrices, matmul and nonlinear activation
layers such as softmax. This extensive approach not only focuses
on the intricacies beyond simple weight matrix multiplication, but
also significantly mitigates quantization errors, offering a robust
solution in low-bitwidth quantization scenarios.
Objective Function. At a macroscopic level, our methodology
employs a layer-wise quantization approach to address the quan-
tization reconstruction problem for each layer’s weights. In the
Transformer architecture, two main structural levels exist: the at-
tention layers and the feed-forward layers. Specifically, in contrast
to GPTQ, which treats each weight matrix as a linear layer and
ignores the impact of other structures on the output, we treat all
structures of the same layer as a whole, represented by the function
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Figure 1: Overall architecture of APTQ (Attention-aware Post-Training Mixed-Precision Quantization): Unifying comprehensive
transformer attention analysis with layer-specific Hessian trace quantization for enhanced model understanding.

𝐹 standing for the attention output Multihead(𝑄,𝐾,𝑉 ). We aim
to reformulate Equation (1) and minimize the new squared error
equation as follows:

argmin
�̂�
| |𝐹 (𝑊 ) − 𝐹 (�̂� ) | |22 . (5)

where𝑊 remains constant and �̂� is the quantized weights to be
optimized. The Hessian matrix of this function is computed as:

𝐻
�̂�

= 2 ·
(
𝐹 ′ (�̂� ) · 𝐹 ′ (�̂� )𝑇 + [𝐹 (𝑊 ) − 𝐹 (�̂� )] · 𝐹 ′′ (�̂� )

)
. (6)

This is the general expression of Hessian matrix. To ensure 𝐻
�̂�

is positive definite and invertible, we only retain the first-order
derivative portion as the expression for the Hessian matrix, which
is widely known as the Levenberg-Marquardt approximation [9]:

𝐻
�̂�

= 2 · [𝐹 ′ (�̂� ) · 𝐹 ′ (�̂� )𝑇 ] . (7)

Derivatives for Different Quantization Layers. The current
problem is transformed into finding the partial derivative of 𝐹 (�̂� )
with respect to the weights �̂� . The 𝐹 (�̂� ) function is different for
the Feed-Forward layers and Attention layers. In the Feed-Forward
layer, the main structure is a linear fully connected layer. The Hes-
sian matrix is easily computed as 𝐻𝐹 = 2𝑋𝐹𝑋𝑇𝐹 , corresponding to
the Hessian matrix form in the GPTQ method.

In the Attention layer, a multi-head mechanism is employed,
where each attention head contains an Attention function:

𝐹 (𝑊,𝑋 ) = MultiHead(𝑄,𝐾,𝑉 ) . (8)

The quantizedweightmatrices lead to different derivatives.When
quantizing the𝑊𝑂 matrix, consider𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 as constants:

𝜕𝐹

𝜕𝑊𝑂
= Concat(head1, ..., headH)𝑇

𝜕𝐹

𝜕𝑋
. (9)

When quantizing the𝑊𝑉 matrix, consider𝑊𝑄 ,𝑊𝐾 ,𝑊𝑂 as con-
stants:

𝜕𝐹

𝜕𝑊𝑉
= 𝑀𝑇

𝜕𝐹

𝜕𝑋
(𝑊𝑂 )𝑇 . (10)

Here,𝑀 represents a matrix composed of 𝐻 heads losing𝑊𝑉
𝑖
:

𝑀ℎ = softmax(
𝑄𝑊

𝑄

ℎ
(𝑊𝐾
ℎ
)𝑇𝐾𝑇√︁

𝑑𝑘

)𝑉 ,𝑀 = [𝑀1, . . . , 𝑀𝐻 ] . (11)

When quantizing 𝑊𝑄 or 𝑊𝐾 matrices, consider the remaining
three terms as constants:

𝜕𝐹

𝜕𝑊
𝑄

ℎ

=
1√︁
𝑑𝑘

𝑄𝑇
𝜕𝐹

𝜕𝑁
P𝑇
ℎ
𝐾𝑊𝐾

ℎ
, (12)

𝜕𝐹

𝜕𝑊𝐾
ℎ

=
1√︁
𝑑𝑘

𝐾𝑇 Pℎ
𝜕𝐹

𝜕𝑁

𝑇

𝑄𝑊
𝑄

ℎ
. (13)

Here,𝑊ℎ represents the weight matrix in the 𝑛-th attention head,
and 𝑁 and Pℎ are given by:

𝑁ℎ =
𝑄𝑊

𝑄

ℎ
(𝑊𝐾
ℎ
)𝑇𝐾𝑇√︁

𝑑𝑘

, 𝑁 = [𝑁1, . . . , 𝑁𝐻 ], (14)

Pℎ = (. . . , , 𝐸ℎ𝑛×𝑛, . . .)𝑛×𝑛𝐻 . (15)
After computing the gradients from equations (9), (10), (12) and (13),
we can further get their second order gradients using equation (7)
to obtain the corresponding Hessian matrix. Thus, referring to the
optimization problem in equation (5), combining the quantization
techniques in equations (2), (3), we derive the following formulas
for updating weights in the context of attention mechanisms:

𝐸 = −
𝑤𝑞 − quant(𝑤𝑞)
( [𝐻−1

�̂�
]𝑞𝑞)

, (16)

𝛿𝐹 = 𝐸 · (𝐻−1
�̂�
):,𝑞 . (17)

Here,𝐸 represents the quantization error,𝑤𝑞 refers to the quantized
weights of the current group. 𝛿𝐹 refers to the corresponding optimal
updates for the remaining float weights (not yet quantized weights
of the current layer). This principle is uniformly applicable to the
quantization of𝑄 (query), 𝐾 (key),𝑉 (value), and𝑂 (output) weight
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matrices in attention mechanisms. By synthesizing these elements,
we can effectively compute the second-order Hessian information
relevant to the weights within the attention layers. This advanced
computation aids in the update and optimization of weights, tar-
geting the minimization of the original squared error as defined in
equation (5). This approach facilitates the realization of quantized
models with robust performance across different components of
the attention mechanism. The comprehensive algorithm is detailed
in Algorithm Box 1.

Algorithm 1 APTQ via Hessian-Attention-based Mixed-Precision
Quantization

Input: Pre-trained model weights𝑊 , blocksize 𝐵, Hessian matrix 𝐻 ,
quantization function quant, Layer names 𝑙𝑎𝑦𝑒𝑟𝑁𝑎𝑚𝑒 , Ratio of 4-bit in

2/4 mixed-precision 𝑅.
1: Initialize quantized weight matrix𝑄 ← 0𝑑row×𝑑col .
2: Initialize block quantization error matrix 𝐸 ← 0𝑑row×𝐵 .
3: Step 1: 4-bit Hessian-Attention-Based Quantization
4: for 𝑖 = 0, 𝐵, 2𝐵, . . . do
5: for 𝑗 = 𝑖, . . . , 𝑖 + 𝐵 − 1 do
6: if “self_attn.k_proj” in layerName then
7: 𝐻𝐾

�̂�
= 2[ 𝜕𝐹

𝜕𝑊𝐾 · 𝜕𝐹

𝜕𝑊𝐾

𝑇 ] from Equation (13)
8: 𝑄𝐾:, 𝑗 ← quant(𝑊:, 𝑗 )
9: 𝐸𝐾:, 𝑗−𝑖 ← (𝑊𝐾

:, 𝑗 − 𝑄𝐾:, 𝑗 )/[𝐻 −1�̂� ]
𝐾
𝑗 𝑗

based on Equation (16)
10: 𝑊𝐾

:, 𝑗 :(𝑖+𝐵) ←𝑊𝐾
:, 𝑗 :(𝑖+𝐵) − 𝐸

𝐾
:, 𝑗−𝑖 · (𝐻 −1�̂� )

𝐾
:, 𝑗 :(𝑖+𝐵) based on Equa-

tion (17)
11: For self_attn.Q, V, and O projection layers, similar updates are

applied
12: Compute the average Hessian trace for each layer in block

𝑖 : (𝑖 + 𝐵) .
13: end if
14: end for
15: end for
16: Step 2: Hessian-trace-based Mixed-Precision Quantization
17: Calculate Hessian trace values for each layer, and order them from high-

est to lowest, starting with the previously established 4-bit quantization.

18: Determine the layers for mixed-precision quantization based on the
computed Hessian trace values and 𝑅.

19: for each selected layer do
20: Calibrate the bit allocation in line with each layer’s Hessian trace

sensitivity and 𝑅.
21: Implement 2/4 bit mixed-precision quantization
22: end for
Output: The resulting quantized model weights𝑄 are characterized by

scale, zero-point, and quantization error.

3.3 Hessian-Trace-based Mixed-Precision
Quantization

As mentioned in Section 2, the Hessian trace provides sensitivity
information for implementing mixed-precision quantization. Fig-
ure 1 illustrates the APTQ method’s allocation of 4-bit and 2-bit
quantizations, utilizing average Hessian trace values as a measure
of layer sensitivity. This approach diverges from the GPTQ method,
which concentrates solely on the matrix multiplication within the
current layer, while APTQ provides a comprehensive assessment
of each layer’s impact.

By computing the average trace of theHessianmatrix, themethod
determines the appropriate level of precision for the quantization of
each layer. Layers with higher Hessian Trace values, which exert a
greater influence on the network’s output, require higher bit preci-
sion to ensure the model’s accuracy. Utilizing this mixed-precision
quantization scheme results in models with an average bit precision
defined by the formula:

average bits = 4 × 𝑅 + 2 × (1 − 𝑅), (18)

where𝑅 denotes the proportion of weights quantized at 4 bits within
the overall quantization process. This formula is a pivotal aspect of
the APTQ methodology, facilitating a dynamic adjustment that is
particularly advantageous for deploying large language models on
edge devices. The adaptability of 𝑅 allows the APTQ algorithm to
allocate higher precision to layers with greater sensitivity, while
applying more robust quantization to less sensitive layers. Conse-
quently, this leads to a quantized model that achieves an optimal
balance between performance and size to deploy on edge devices.

Algorithm 1 unfolds into two decisive steps aimed at enhancing
model efficiency while preserving performance. Step 1 applies 4-bit
quantization to the attention mechanism’s 𝐾 (key) layer, guided by
the Hessian matrix, 𝐻𝐾

�̂�
, that entails the second-order derivative

crucial for this optimization, as formulated in Equation (13). This
step adjusts the precision of the 𝐾 layer’s weights, considering the
broader implications for the model’s performance. The individual
optimization of the 𝐾 , 𝑄 , 𝑉 , and 𝑂 layers is informed by their
respective Hessian matrices, ensuring that quantization is precisely
targeted tomaintain the balance between efficiency and accuracy. In
essence, Hessian-Attention-based quantization strategically refines
weight precisionwithin attention layers tomaintainmodel accuracy
without unnecessary computational burden.

In the algorithm’s second phase, a mixed-precision quantization
strategy is implemented, beginning with the calculation of Hessian
trace values across the layers. These values are then ordered in a
descending sequence, starting with the layers previously quantized
at a 4-bit level. This ordering informs the selection of layers for
subsequent mixed-precision quantization, which is performed in
accordance with the computed Hessian trace values. This selective
quantization process is designed to align closely with each layer’s
functional impact on the overall model, ensuring a quantization
scheme that is both effective and efficient.

4 EXPERIMENT
4.1 Experiment Setup
To evaluate APTQ’s performance, we focus on two primary met-
rics: perplexity and zero-shot performance. The LLaMa family [17]
serves as the foundation for our experiments, owing to its effi-
cacy and critical influence in recent model advancements. To main-
tain consistency and comparability, our benchmarking procedures
against GPTQ adhere to identical experimental configurations. Our
calibration dataset encompasses 128 segments, each containing
2048 tokens randomly sampled from the C4 dataset. All experi-
ments deploy a group size of 128 and are executed on a single
NVIDIA A100 GPU of 80GB memory. Our APTQ is applied directly
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Table 1: Comparison of Perplexity of Quantized LLaMa Mod-
els on C4 and WikiText-2 Datasets.

Method Avg bit C4 ↓ WikiText-2 ↓
LLaMa-7B 16 5.22 5.68
GPTQ [6] 4.0 5.62 8.14
OWQ [10] 4.01 5.56 7.15
LLM-QAT [12] 4.0 7.40 10.90
PB-LLM-20% [16] 3.4 20.61 17.19
APTQ 4.0 5.23 6.45
APTQ-75% 3.5 5.54 6.54
APTQ-50% 3.0 6.24 6.76

to the pre-trained model (post-training quantization). The evalua-
tion of zero-shot performance is conducted using the EleutherAI/lm-
evaluation-harness [7]. Note that we use the format APTQ-R to
represent the mixed precision (2/4-bit) setting, with 𝑅 represents
the percentage of 4-bit weights as discussed in Equation (18).

4.2 Evaluation of Perplexity performance
We assess the the performance of APTQ using the C4 [15] and
WikiText-2 [13] benchmarks. We compare APTQ against three
established PTQ methods: GPTQ [6], OWQ [10], and PB-LLM [16].
Notably, OWQ and PB-LLM extend upon GPTQ, with PB-LLM
incorporating mixed-precision quantization. To ensure a balanced
comparison, all methods are evaluated on a standardized platform.
Moreover, we benchmark APTQ’s performance with the leading
QAT approach, LLM-QAT. Table 1 reveals that APTQ, at an average
4 bit, closely matches the full-precision model and attains SOTA
performance on the C4 dataset, showing only a 0.01-point increase
in perplexity. Remarkably, even with average bit rates reduced
to 3.5 and 3.0, APTQ’s perplexity remains comparable to that of
GPTQ’s 4-bit model. This evidence of APTQ’s stability at low bit
rates positions it as a potent tool for optimizing the quantization
and deployment of large-scale language models like LLaMa-7B.

To substantiate the robustness and broad applicability of the Hes-
sian trace-based mixed-precision quantization posited in our study,
we conducted a comparative analysis of various 4-bit utilization
levels of APTQ against other prevalent PTQ methods applied to the
LLaMa-7B model on the C4 dataset. The APTQ model, quantized at
an average of 4 bit, not only approaches the full-precision model’s
perplexity but also outperforms all other PTQ approaches at a re-
duced precision of 3.5 bits. Impressively, configurations below 3
bits still surpass the 4-bit LLM-QAT baseline, underscoring APTQ’s
efficacy. These results unequivocally demonstrate the superior per-
formance of APTQ, leveraging Hessian trace-driven precision allo-
cation to optimize quantization outcomes.

Figure 2 visually summarizes our findings. It presents the com-
parative perplexity results of the LLaMa-7B model using APTQ at
various bit utilization ratios when benchmarked against other PTQ
and QAT methods on the C4 dataset. As depicted in the figure, the
APTQmodel consistently maintains competitive performance, even
at significantly reduced bit rates. This graphical representation rein-
forces the effectiveness of the Hessian trace-based mixed-precision
approach we advocate in this study, illustrating its potential for
resource-efficient large model deployment.

4.3 Evaluation of Zero-shot performance
In the evaluation of zero-shot performance, we extend our investiga-
tion to a suite of challenging zero-shot language tasks. These tasks,
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Figure 2: Comparative perplexity results of LLaMa-7B using
APTQ at various 4-bit ratio against others on C4 dataset
which span Predictive Question Answering (PIQA), Hellaswag,
ARC-Easy (Arc-E), ARC-Challenge (Arc-C), andWinoGrande, serve
as a benchmark for common sense reasoning in machine compre-
hension. We compare the proposed APTQ method on LLaMa-7B
and LLaMa-13B with other advanced quantization techniques in-
cluding round-to-nearest (RTN), SmoothQuant [18], FPQ [11], LLM-
QAT [12], and GPTQ [6].

As depicted in Table 2, we benchmark the APTQ framework
against current SOTA PTQ methodologies applied to the LLaMa-7B
model. Our findings illustrate that APTQ, when configured to 3.8
bits, sustains a remarkably minimal deviation in accuracy, with
a diminutive average accuracy drop of only 0.32 points from the
full-precision model. Even when the APTQ is optimized down to
an average of 3.6 or 3.5 bits, it still consistently outperforms the ma-
jority of 4-bit PTQ models. These findings demonstrate that APTQ
excels in zero-shot tasks with minimal bit usage, highlighting its
effectiveness in deploying large-scale language models in envi-
ronments with limited computational resources. This underscores
APTQ’s advantage in resource-efficient performance.

4.4 Ablation Study
Furthermore, we present an ablation study to validate the superior-
ity of APTQ over manual block-wise quantization schemes. Given
that quantization is performed on a layer-wise basis, the most intu-
itive mixed-precision quantization strategy is to uniformly quantize
all layers within each block. Here, we compare this conventional
approach with APTQ on the LLaMa-7B model tested on the C4
dataset, with perplexity as the evaluation metric. The results in Ta-
ble 3 reveal APTQ’s efficacy over manual block-wise quantization
for LLaMa-7B on C4, reflected in its consistently lower PPL across
various quantization ratios.

5 CONCLUSION
This paper presented an Attention-aware Post-Training Mixed-
Precision Quantization (APTQ) algorithm for quantizing large lan-
guage models to mixed precisions. APTQ is a promising post-
training quantization strategy by utilizing the second-order infor-
mation of each layer’s weights with consideration of the nonlinear
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Table 2: Zero-shot accuracy of quantized LLaMa models on common sense reasoning tasks.

Model LLaMa-7B LLaMa-13B

Method Avg bit PIQA Hellaswag Arc-E Arc-C WinoGrande 𝐴𝑐𝑐% ↑ PIQA Hellaswag Arc-E Arc-C WinoGrande 𝐴𝑐𝑐% ↑

FP16 16 79.2 76.2 72.8 44.7 69.9 68.56 80.3 79.0 74.8 47.9 72.7 70.94

RTN [12] 4.0 77.3 72.7 68.8 43.1 66.9 65.76 79.1 76.8 72.6 46.5 70.5 69.10
SmoothQuant [18] 4.0 76.4 68.1 67.3 39.6 66.0 63.48 77.9 74.2 76.3 45.5 69.7 68.72
FPQ [11] 4.0 77.8 75.0 72.4 41.7 69.0 66.60 79.4 77.7 72.8 47.3 71.5 69.74
LLM-QAT [12] 4.0 78.3 74.0 70.0 41.7 69.0 66.60 79.4 77.7 72.8 47.3 71.5 69.74
GPTQ [6] 4.0 76.0 69.4 66.9 43.0 66.7 64.40 79.8 77.7 73.2 45.9 72.6 69.84
PB-LLM 30% [16] 4.1 78 74.3 69.0 42.3 69.7 66.66 - - - - - -
PB-LLM 10% [16] 2.7 67.8 68.1 58.7 39.6 67.4 60.32 - - - - - -
APTQ 4.0 78.6 75.7 72.4 44.4 69.3 68.08 79.9 78.8 73.9 47.0 72.1 70.34
APTQ-90% 3.8 78.8 75.9 73.6 43.5 69.4 68.24 79.4 78.8 73.8 47.8 72.6 70.48

APTQ-80% 3.6 78.0 75.3 70.2 43.7 69.5 67.34 79.5 78.2 72.8 46.5 72.6 69.92
APTQ-75% 3.5 77.5 74.5 68.7 44.2 70.2 67.02 79.3 77.6 71.8 46.1 73.2 69.60
APTQ-70% 3.4 77.6 73.4 66.9 41.3 68.9 65.62 78.3 77.5 71.4 46.3 72.5 69.20
APTQ-60% 3.2 76.8 72.1 63.1 39.3 69.5 64.16 78.6 74.2 69.5 44.2 69.5 67.20
APTQ-50% 3.0 74.5 68.3 57.9 36.4 65.3 60.48 74.4 71.2 64.1 41.0 68.0 63.74

Table 3: Ablation Study: Comparison of APTQ and Manual
Block-wise Quantization on LLaMa-7B’s C4 Perplexity

Method Ratio of 4-bit Avg bit Perplexity ↓
Manual Block-wise 75% 3.5 5.84
APTQ-75% 75% 3.5 5.54
Manual Block-wise 50% 3.0 7.04
APTQ-50% 50% 3.0 6.24

effect of attention outputs. Furthermore, the Hessian trace is devel-
oped as a sensitivity measurement to further achieve mixed 2/4-bit
precision. For LLM LLaMa-7B, APTQ surpasses previous quantiza-
tion methods, achieving an average of 4 bits with a 5.22 perplexity,
nearly equivalent to full precision in the C4 dataset. Furthermore,
under the zero-shot LLM setting, APTQ achieves the state-of-the-
art results 68.24% and 70.48% accuracy at an average bitwidth of 3.8
for LLaMA-7B and LLaMa-13B, respectively, indicating that APTQ
can achieve a deeply quantized solution for large language models
without sacrificing accuracy.
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